Previous |  Up |  Next

Article

Title: Remarks on $D$-integral complete multipartite graphs (English)
Author: Híc, Pavel
Author: Pokorný, Milan
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 66
Issue: 2
Year: 2016
Pages: 457-464
Summary lang: English
.
Category: math
.
Summary: A graph is called distance integral (or $D$-integral) if all eigenvalues of its distance matrix are integers. In their study of $D$-integral complete multipartite graphs, Yang and Wang (2015) posed two questions on the existence of such graphs. We resolve these questions and present some further results on $D$-integral complete multipartite graphs. We give the first known distance integral complete multipartite graphs $K_{p_{1},p_{2},p_{3}}$ with $p_{1}<p_{2}<p_{3}$, and $K_{p_{1},p_{2},p_{3},p_{4}}$ with $p_{1}<p_{2}<p_{3}<p_{4}$, as well as the infinite classes of distance integral complete multipartite graphs $K_{a_{1} p_{1},a_{2} p_{2},\ldots ,a_{s} p_{s}}$ with $s=5,6$. (English)
Keyword: distance spectrum
Keyword: integral graph
Keyword: distance integral graph
Keyword: complete multipartite graph
MSC: 05C50
idZBL: Zbl 06604479
idMR: MR3519614
DOI: 10.1007/s10587-016-0268-8
.
Date available: 2016-06-16T12:54:42Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/145736
.
Reference: [1] Andreescu, T., Andrica, D., Cucurezeanu, I.: An Introduction to Diophantine Equations. A Problem-Based Approach.Birkhäuser New York (2010). Zbl 1226.11001, MR 2723590
Reference: [2] Aouchiche, M., Hansen, P.: Distance spectra of graphs: a survey.Linear Algebra Appl. 458 (2014), 301-386. Zbl 1295.05093, MR 3231823
Reference: [3] Balińska, K., Cvetković, D., Radosavljević, Z., Simić, S., Stevanović, D.: A survey on integral graphs.Publ. Elektroteh. Fak., Univ. Beogr., Ser. Mat. 13 (2002), 42-65. Zbl 1051.05057, MR 1992839
Reference: [4] Clark, J., Kettle, S. F. A.: Incidence and distance matrices.Inorg. Chim. Acta 14 (1975), 201-205. 10.1016/S0020-1693(00)85743-6
Reference: [5] Du, Z., Ilić, A., Feng, L.: Further results on the distance spectral radius of graphs.Linear Multilinear Algebra 61 (2013), 1287-1301. Zbl 1272.05110, MR 3175365, 10.1080/03081087.2012.750654
Reference: [6] Güngör, A. D., Bozkurt, Ş. B.: On the distance spectral radius and the distance energy of graphs.Linear Multilinear Algebra 59 (2011), 365-370. Zbl 1223.05174, MR 2802519, 10.1080/03081080903503678
Reference: [7] Harary, F., Schwenk, A. J.: Which graphs have integral spectra?.Graphs Combinatorics, Proc. Capital Conf., Washington, 1973, Lect. Notes Math. 406 Springer, Berlin (1974), 45-51. MR 0387124, 10.1007/BFb0066434
Reference: [8] Ilić, A.: Distance spectra and distance energy of integral circulant graphs.Linear Algebra Appl. 433 (2010), 1005-1014. Zbl 1215.05105, MR 2658651
Reference: [9] Indulal, G., Gutman, I., Vijayakumar, A.: On distance energy of graphs.MATCH Commun. Math. Comput. Chem. 60 (2008), 461-472. Zbl 1199.05226, MR 2457864
Reference: [10] Pokorný, M., Híc, P., Stevanović, D., Milošević, M.: On distance integral graphs.Discrete Math. 338 (2015), 1784-1792. Zbl 1315.05045, MR 3351701, 10.1016/j.disc.2015.03.004
Reference: [11] Renteln, P.: The distance spectra of Cayley graphs of Coxeter groups.Discrete Math. 311 (2011), 738-755. Zbl 1233.05132, MR 2774230, 10.1016/j.disc.2011.01.021
Reference: [12] Stevanović, D., Indulal, G.: The distance spectrum and energy of the compositions of regular graphs.Appl. Math. Lett. 22 (2009), 1136-1140. Zbl 1179.05040, MR 2523015, 10.1016/j.aml.2008.11.007
Reference: [13] Stevanović, D., Milošević, M., Híc, P., Pokorný, M.: Proof of a conjecture on distance energy of complete multipartite graphs.MATCH Commun. Math. Comput. Chem. 70 (2013), 157-162. Zbl 1299.05233, MR 3136757
Reference: [14] Yang, R., Wang, L.: Distance integral complete multipartite graphs with $s=5,6$.(2015), 6 pages Preprint arXiv:1511.04983v1 [math.CO]. MR 3359263
Reference: [15] Yang, R., Wang, L.: Distance integral complete $r$-partite graphs.Filomat 29 (2015), 739-749. MR 3359263, 10.2298/FIL1504739Y
Reference: [16] Zhou, B., Ilić, A.: On distance spectral radius and distance energy of graphs.MATCH Commun. Math. Comput. Chem. 64 (2010), 261-280. Zbl 1265.05437, MR 2677587
.

Files

Files Size Format View
CzechMathJ_66-2016-2_13.pdf 246.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo