Previous |  Up |  Next

Article

Title: Parallel and totally geodesic hypersurfaces of 5-dimensional 2-step homogeneous nilmanifolds (English)
Author: Nasehi, Mehri
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 66
Issue: 2
Year: 2016
Pages: 547-559
Summary lang: English
.
Category: math
.
Summary: In this paper we study parallel and totally geodesic hypersurfaces of two-step homogeneous nilmanifolds of dimension five. We give the complete classification and explicitly describe parallel and totally geodesic hypersurfaces of these spaces. Moreover, we prove that two-step homogeneous nilmanifolds of dimension five which have one-dimensional centre never admit parallel hypersurfaces. Also we prove that the only two-step homogeneous nilmanifolds of dimension five which admit totally geodesic hypersurfaces have three-dimensional centre. (English)
Keyword: hypersurface
Keyword: totally geodesic hypersurface
Keyword: parallel geodesic hypersurfaces
Keyword: two-step homogeneous nilmanifold
MSC: 53C30
MSC: 53C42
idZBL: Zbl 06604485
idMR: MR3519620
DOI: 10.1007/s10587-016-0274-x
.
Date available: 2016-06-16T13:03:32Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/145742
.
Reference: [1] Aghasi, M., Nasehi, M.: On homogeneous Randers spaces with Douglas or naturally reductive metrics.Differ. Geom. Dyn. Syst. 17 (2015), 1-12. Zbl 1333.53068, MR 3367072
Reference: [2] Aghasi, M., Nasehi, M.: On the geometrical properties of solvable Lie groups.Adv. Geom. 15 507-517 (2015). Zbl 1328.53062, MR 3406478, 10.1515/advgeom-2015-0025
Reference: [3] Aghasi, M., Nasehi, M.: Some geometrical properties of a five-dimensional solvable Lie group.Differ. Geom. Dyn. Syst. 15 (2013), 1-12. Zbl 1331.53071, MR 3073067
Reference: [4] Belkhelfa, M., Dillen, F., Inoguchi, J.: Surfaces with parallel second fundamental form in Bianchi-Cartan-Vranceanu spaces.PDEs, Submanifolds and Affine Differential Geometry, Warszawa, 2000 Polish Academy of Sciences, Inst. Math., Warszawa Banach Cent. Publ. 57 (2002), 67-87 B. Opozda, et al. Zbl 1029.53071, MR 1972463
Reference: [5] Božek, M.: Existence of generalized symmetric Riemannian spaces with solvable isometry group.Čas. Pěst. Mat. 105 (1980), 368-384. Zbl 0475.53045, MR 0597914
Reference: [6] Calvaruso, G., Kowalski, O., Marinosci, R. A.: Homogeneous geodesics in solvable Lie groups.Acta Math. Hungar. 101 (2003), 313-322. Zbl 1057.53041, MR 2017938, 10.1023/B:AMHU.0000004942.87374.0e
Reference: [7] Calvaruso, G., Veken, J. Van der: Totally geodesic and parallel hypersurfaces of four-dimensional oscillator groups.Results Math. 64 (2013), 135-153. MR 3095133, 10.1007/s00025-012-0304-4
Reference: [8] Calvaruso, G., Veken, J. Van der: Parallel surfaces in three-dimensional Lorentzian Lie groups.Taiwanese J. Math. 14 (2010), 223-250. MR 2603452, 10.11650/twjm/1500405737
Reference: [9] Calvaruso, G., Veken, J. Van der: Lorentzian symmetric three-spaces and the classification of their parallel surfaces.Int. J. Math. 20 (2009), 1185-1205. MR 2574312, 10.1142/S0129167X09005728
Reference: [10] Chen, B.-Y.: Complete classification of parallel spatial surfaces in pseudo-Riemannian space forms with arbitrary index and dimension.J. Geom. Phys. 60 (2010), 260-280. Zbl 1205.53061, MR 2587393, 10.1016/j.geomphys.2009.09.012
Reference: [11] Chen, B.-Y., Veken, J. Van der: Complete classification of parallel surfaces in 4-dimensional Lorentzian space forms.Tohoku Math. J. 61 (2009), 1-40. MR 2501861, 10.2748/tmj/1238764545
Reference: [12] Leo, B. De, Veken, J. Van der: Totally geodesic hypersurfaces of four-dimensional generalized symmetric spaces.Geom. Dedicata 159 (2012), 373-387. MR 2944538, 10.1007/s10711-011-9665-1
Reference: [13] Homolya, S., Kowalski, O.: Simply connected two-step homogeneous nilmanifolds of dimension 5.Note Mat. 26 (2006), 69-77. Zbl 1115.53035, MR 2267683
Reference: [14] Inoguchi, J., Veken, J. Van der: A complete classification of parallel surfaces in three-dimensional homogeneous spaces.Geom. Dedicata 131 (2008), 159-172. MR 2369197, 10.1007/s10711-007-9222-0
Reference: [15] Inoguchi, J., Veken, J. Van der: Parallel surfaces in the motion groups $E(1,1)$ and $E(2)$.Bull. Belg. Math. Soc.-Simon Stevin 14 (2007), 321-332. MR 2341567, 10.36045/bbms/1179839224
Reference: [16] Kowalski, O.: Generalized Symmetric Spaces.Lecture Notes in Mathematics 805 Springer, Berlin (1980). Zbl 0431.53042, MR 0579184
Reference: [17] Lauret, J.: Homogeneous nilmanifolds of dimension 3 and 4.Geom. Dedicata 68 (1997), 145-155. MR 1484561, 10.1023/A:1004936725971
Reference: [18] H. B. Lawson, Jr.: Local rigidity theorems for minimal hypersurfaces.Ann. Math. (2) 89 (1969), 187-197. Zbl 0174.24901, MR 0238229, 10.2307/1970816
Reference: [19] Moghaddam, H. R. Salimi: On the Randers metrics on two-step homogeneous nilmanifolds of dimension five.Int. J. Geom. Methods Mod. Phys. 8 (2011), 501-510. MR 2807115, 10.1142/S0219887811005257
Reference: [20] Simon, U., Weinstein, A.: Anwendungen der De Rhamschen Zerlegung auf Probleme der lokalen Flächentheorie.Manuscr. Math. 1 (1969), 139-146 German. Zbl 0172.46701, MR 0246234, 10.1007/BF01173099
.

Files

Files Size Format View
CzechMathJ_66-2016-2_19.pdf 257.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo