Title:
|
Parallel and totally geodesic hypersurfaces of 5-dimensional 2-step homogeneous nilmanifolds (English) |
Author:
|
Nasehi, Mehri |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
66 |
Issue:
|
2 |
Year:
|
2016 |
Pages:
|
547-559 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper we study parallel and totally geodesic hypersurfaces of two-step homogeneous nilmanifolds of dimension five. We give the complete classification and explicitly describe parallel and totally geodesic hypersurfaces of these spaces. Moreover, we prove that two-step homogeneous nilmanifolds of dimension five which have one-dimensional centre never admit parallel hypersurfaces. Also we prove that the only two-step homogeneous nilmanifolds of dimension five which admit totally geodesic hypersurfaces have three-dimensional centre. (English) |
Keyword:
|
hypersurface |
Keyword:
|
totally geodesic hypersurface |
Keyword:
|
parallel geodesic hypersurfaces |
Keyword:
|
two-step homogeneous nilmanifold |
MSC:
|
53C30 |
MSC:
|
53C42 |
idZBL:
|
Zbl 06604485 |
idMR:
|
MR3519620 |
DOI:
|
10.1007/s10587-016-0274-x |
. |
Date available:
|
2016-06-16T13:03:32Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/145742 |
. |
Reference:
|
[1] Aghasi, M., Nasehi, M.: On homogeneous Randers spaces with Douglas or naturally reductive metrics.Differ. Geom. Dyn. Syst. 17 (2015), 1-12. Zbl 1333.53068, MR 3367072 |
Reference:
|
[2] Aghasi, M., Nasehi, M.: On the geometrical properties of solvable Lie groups.Adv. Geom. 15 507-517 (2015). Zbl 1328.53062, MR 3406478, 10.1515/advgeom-2015-0025 |
Reference:
|
[3] Aghasi, M., Nasehi, M.: Some geometrical properties of a five-dimensional solvable Lie group.Differ. Geom. Dyn. Syst. 15 (2013), 1-12. Zbl 1331.53071, MR 3073067 |
Reference:
|
[4] Belkhelfa, M., Dillen, F., Inoguchi, J.: Surfaces with parallel second fundamental form in Bianchi-Cartan-Vranceanu spaces.PDEs, Submanifolds and Affine Differential Geometry, Warszawa, 2000 Polish Academy of Sciences, Inst. Math., Warszawa Banach Cent. Publ. 57 (2002), 67-87 B. Opozda, et al. Zbl 1029.53071, MR 1972463 |
Reference:
|
[5] Božek, M.: Existence of generalized symmetric Riemannian spaces with solvable isometry group.Čas. Pěst. Mat. 105 (1980), 368-384. Zbl 0475.53045, MR 0597914 |
Reference:
|
[6] Calvaruso, G., Kowalski, O., Marinosci, R. A.: Homogeneous geodesics in solvable Lie groups.Acta Math. Hungar. 101 (2003), 313-322. Zbl 1057.53041, MR 2017938, 10.1023/B:AMHU.0000004942.87374.0e |
Reference:
|
[7] Calvaruso, G., Veken, J. Van der: Totally geodesic and parallel hypersurfaces of four-dimensional oscillator groups.Results Math. 64 (2013), 135-153. MR 3095133, 10.1007/s00025-012-0304-4 |
Reference:
|
[8] Calvaruso, G., Veken, J. Van der: Parallel surfaces in three-dimensional Lorentzian Lie groups.Taiwanese J. Math. 14 (2010), 223-250. MR 2603452, 10.11650/twjm/1500405737 |
Reference:
|
[9] Calvaruso, G., Veken, J. Van der: Lorentzian symmetric three-spaces and the classification of their parallel surfaces.Int. J. Math. 20 (2009), 1185-1205. MR 2574312, 10.1142/S0129167X09005728 |
Reference:
|
[10] Chen, B.-Y.: Complete classification of parallel spatial surfaces in pseudo-Riemannian space forms with arbitrary index and dimension.J. Geom. Phys. 60 (2010), 260-280. Zbl 1205.53061, MR 2587393, 10.1016/j.geomphys.2009.09.012 |
Reference:
|
[11] Chen, B.-Y., Veken, J. Van der: Complete classification of parallel surfaces in 4-dimensional Lorentzian space forms.Tohoku Math. J. 61 (2009), 1-40. MR 2501861, 10.2748/tmj/1238764545 |
Reference:
|
[12] Leo, B. De, Veken, J. Van der: Totally geodesic hypersurfaces of four-dimensional generalized symmetric spaces.Geom. Dedicata 159 (2012), 373-387. MR 2944538, 10.1007/s10711-011-9665-1 |
Reference:
|
[13] Homolya, S., Kowalski, O.: Simply connected two-step homogeneous nilmanifolds of dimension 5.Note Mat. 26 (2006), 69-77. Zbl 1115.53035, MR 2267683 |
Reference:
|
[14] Inoguchi, J., Veken, J. Van der: A complete classification of parallel surfaces in three-dimensional homogeneous spaces.Geom. Dedicata 131 (2008), 159-172. MR 2369197, 10.1007/s10711-007-9222-0 |
Reference:
|
[15] Inoguchi, J., Veken, J. Van der: Parallel surfaces in the motion groups $E(1,1)$ and $E(2)$.Bull. Belg. Math. Soc.-Simon Stevin 14 (2007), 321-332. MR 2341567, 10.36045/bbms/1179839224 |
Reference:
|
[16] Kowalski, O.: Generalized Symmetric Spaces.Lecture Notes in Mathematics 805 Springer, Berlin (1980). Zbl 0431.53042, MR 0579184 |
Reference:
|
[17] Lauret, J.: Homogeneous nilmanifolds of dimension 3 and 4.Geom. Dedicata 68 (1997), 145-155. MR 1484561, 10.1023/A:1004936725971 |
Reference:
|
[18] H. B. Lawson, Jr.: Local rigidity theorems for minimal hypersurfaces.Ann. Math. (2) 89 (1969), 187-197. Zbl 0174.24901, MR 0238229, 10.2307/1970816 |
Reference:
|
[19] Moghaddam, H. R. Salimi: On the Randers metrics on two-step homogeneous nilmanifolds of dimension five.Int. J. Geom. Methods Mod. Phys. 8 (2011), 501-510. MR 2807115, 10.1142/S0219887811005257 |
Reference:
|
[20] Simon, U., Weinstein, A.: Anwendungen der De Rhamschen Zerlegung auf Probleme der lokalen Flächentheorie.Manuscr. Math. 1 (1969), 139-146 German. Zbl 0172.46701, MR 0246234, 10.1007/BF01173099 |
. |