Previous |  Up |  Next

Article

Title: Torsion units for some almost simple groups (English)
Author: Gildea, Joe
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 66
Issue: 2
Year: 2016
Pages: 561-574
Summary lang: English
.
Category: math
.
Summary: We investigate the Zassenhaus conjecture regarding rational conjugacy of torsion units in integral group rings for certain automorphism groups of simple groups. Recently, many new restrictions on partial augmentations for torsion units of integral group rings have improved the effectiveness of the Luther-Passi method for verifying the Zassenhaus conjecture for certain groups. We prove that the Zassenhaus conjecture is true for the automorphism group of the simple group $\rm PSL(2,11)$. Additionally we prove that the Prime graph question is true for the automorphism group of the simple group $\rm PSL(2,13)$. (English)
Keyword: Zassenhaus conjecture
Keyword: torsion unit
Keyword: partial augmentation
Keyword: integral group ring
MSC: 16S34
MSC: 16U60
MSC: 20C05
idZBL: Zbl 06604486
idMR: MR3519621
DOI: 10.1007/s10587-016-0275-9
.
Date available: 2016-06-16T13:06:06Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/145743
.
Reference: [1] Artamonov, V. A., Bovdi, A. A.: Integral group rings: Groups of units and classical K-theory.J. Sov. Math. 57 (1991), 2931-2958 translation from Itogi Nauki Tekh., Ser. Algebra, Topologiya, Geom. 27 3-43 (1989).
Reference: [2] Bächle, A., Margolis, L.: Rational conjugacy of torsion units in integral group rings of non-solvable groups.ArXiv:1305.7419 [math.RT] (2013). MR 3715687
Reference: [3] Bovdi, V., Grishkov, A., Konovalov, A.: Kimmerle conjecture for the Held and O'Nan sporadic simple groups.Sci. Math. Jpn. 69 (2009), 353-362. Zbl 1182.16030, MR 2510100
Reference: [4] Bovdi, V., Hertweck, M.: Zassenhaus conjecture for central extensions of {$S_5$}.J. Group Theory 11 (2008), 63-74. Zbl 1143.16032, MR 2381018, 10.1515/JGT.2008.004
Reference: [5] Bovdi, V., Höfert, C., Kimmerle, W.: On the first Zassenhaus conjecture for integral group rings.Publ. Math. 65 (2004), 291-303. Zbl 1076.16028, MR 2107948
Reference: [6] Bovdi, V. A., Jespers, E., Konovalov, A. B.: Torsion units in integral group rings of Janko simple groups.Math. Comput. 80 (2011), 593-615. Zbl 1209.16026, MR 2728996, 10.1090/S0025-5718-2010-02376-2
Reference: [7] Bovdi, V., Konovalov, A.: Integral group ring of the Mathieu simple group $M_{24}$.J. Algebra Appl. 11 (2012), Article ID 1250016, 10 pages. Zbl 1247.16032, MR 2900886, 10.1142/S0219498811005427
Reference: [8] Bovdi, V. A., Konovalov, A. B.: Torsion units in integral group ring of Higman-Sims simple group.Stud. Sci. Math. Hung. 47 (2010), 1-11. Zbl 1221.16026, MR 2654223
Reference: [9] Bovdi, V. A., Konovalov, A. B.: Integral group ring of Rudvalis simple group.Ukr. Mat. Zh. 61 (2009), 3-13 and Ukr. Math. J. 61 (2009), 1-13. Zbl 1209.16027, MR 2562187, 10.1007/s11253-009-0199-8
Reference: [10] Bovdi, V. A., Konovalov, A. B.: Integral group ring of the Mathieu simple group $M_{23}$.Commun. Algebra 36 (2008), 2670-2680. Zbl 1148.16027, MR 2422512, 10.1080/00927870802068045
Reference: [11] Bovdi, V., Konovalov, A.: Integral group ring of the first Mathieu simple group.Groups St. Andrews 2005. Vol. I. Selected Papers of the Conference, St. Andrews, 2005 London Math. Soc. Lecture Note Ser. 339 Cambridge University Press, Cambridge (2007), 237-245 C. M. Campbell et al. Zbl 1120.16025, MR 2328163
Reference: [12] Bovdi, V. A., Konovalov, A. B.: Integral group ring of the McLaughlin simple group.Algebra Discrete Math. 2007 (2007), 43-53. Zbl 1159.16028, MR 2364062
Reference: [13] Bovdi, V. A., Konovalov, A. B., Linton, S.: Torsion units in integral group rings of Conway simple groups.Int. J. Algebra Comput. 21 (2011), 615-634. Zbl 1234.16025, MR 2812661, 10.1142/S0218196711006376
Reference: [14] Bovdi, V. A., Konovalov, A. B., Linton, S.: Torsion units in integral group ring of the Mathieu simple group $M_{22}$.LMS J. Comput. Math. (electronic only) 11 (2008), 28-39. Zbl 1225.16017, MR 2379938, 10.1112/S1461157000000516
Reference: [15] Bovdi, V. A., Konovalov, A. B., Marcos, E. D. N.: Integral group ring of the Suzuki sporadic simple group.Publ. Math. 72 (2008), 487-503. Zbl 1156.16022, MR 2406705
Reference: [16] Bovdi, A., Konovalov, A., Rossmanith, R., Schneider, C.: LAGUNA---Lie AlGebras and UNits of group Algebras.(2013), http://www.cs.st-andrews.ac.uk/ {alexk/laguna}.
Reference: [17] Bovdi, V. A., Konovalov, A. B., Siciliano, S.: Integral group ring of the Mathieu simple group $M_{12}$.Rend. Circ. Mat. Palermo (2) 56 (2007), 125-136. Zbl 1125.16020, MR 2313777, 10.1007/BF03031434
Reference: [18] Caicedo, M., Margolis, L., Río, Á. del: Zassenhaus conjecture for cyclic-by-abelian groups.J. Lond. Math. Soc., II. Ser. 88 (2013), 65-78. MR 3092258, 10.1112/jlms/jdt002
Reference: [19] Cohn, J. A., Livingstone, D.: On the structure of group algebras. I.Can. J. Math. 17 (1965), 583-593. Zbl 0132.27404, MR 0179266, 10.4153/CJM-1965-058-2
Reference: [20] Gildea, J.: Zassenhaus conjecture for integral group ring of simple linear groups.J. Algebra Appl. 12 (2013), 1350016, 10 pages. Zbl 1280.16035, MR 3063455, 10.1142/S0219498813500163
Reference: [21] Hertweck, M.: Zassenhaus conjecture for {$A_6$}.Proc. Indian Acad. Sci., Math. Sci. 118 (2008), 189-195. Zbl 1149.16027, MR 2423231, 10.1007/s12044-008-0011-y
Reference: [22] Hertweck, M.: Partial augmentations and Brauer character values of torsion units in group rings.http://arxiv.org/abs/math/0612429 (2007).
Reference: [23] Hertweck, M.: On the torsion units of some integral group rings.Algebra Colloq. 13 (2006), 329-348. Zbl 1097.16009, MR 2208368, 10.1142/S1005386706000290
Reference: [24] Hertweck, M.: Contributions to the Integral Representation Theory of Groups.Habilitationsschrift, University of Stuttgart (electronic publication) Stuttgart (2004), http://elib.uni-stuttgart.de/opus/volltexte/2004/1638.
Reference: [25] Hertweck, M., Höfert, C. R., Kimmerle, W.: Finite groups of units and their composition factors in the integral group rings of the group {$ PSL(2,q)$}.J. Group Theory 12 (2009), 873-882. MR 2582054, 10.1515/JGT.2009.019
Reference: [26] Höfert, C., Kimmerle, W.: On torsion units of integral group rings of groups of small order.Groups, Rings and Group Rings. Proc. of the Conf., Ubatuba, 2004 Lect. Notes Pure Appl. Math. 248 Chapman & Hall/CRC, Boca Raton (2006), A. Giambruno et al. 243-252. Zbl 1107.16031, MR 2226199
Reference: [27] Jespers, E., Kimmerle, W., Marciniak, Z., (eds.), G. Nebe: Mini-Workshop: Arithmetic of group rings.German Oberwolfach Rep. 4 (2007), 3209-3240. Zbl 1177.16002, MR 2463649
Reference: [28] Kimmerle, W.: On the prime graph of the unit group of integral group rings of finite groups.Groups, Rings and Algebras Contemp. Math. 420 American Mathematical Society (AMS), Providence (2006), 215-228 W. Chin et al. Zbl 1126.20001, MR 2279241, 10.1090/conm/420/07977
Reference: [29] Luthar, I. S., Passi, I. B. S.: Zassenhaus conjecture for $A_5$.Proc. Indian Acad. Sci., Math. Sci. 99 (1989), 1-5. Zbl 0678.16008, MR 1004634, 10.1007/BF02874643
Reference: [30] Luthar, I. S., Trama, P.: Zassenhaus conjecture for {$S_5$}.Commun. Algebra 19 (1991), 2353-2362. MR 1123128, 10.1080/00927879108824263
Reference: [31] Roggenkamp, K., Scott, L.: Isomorphisms of p-adic group rings.Ann. Math. (2) 126 (1987), 593-647. Zbl 0633.20003, MR 0916720
Reference: [32] Salim, M. A.: The prime graph conjecture for integral group rings of some alternating groups.Int. J. Group Theory 2 (2013), 175-185. Zbl 1301.16045, MR 3065873
Reference: [33] Salim, M. A. M.: Kimmerle's conjecture for integral group rings of some alternating groups.Acta Math. Acad. Paedagog. Nyházi. (N.S.) (electronic only) 27 (2011), 9-22. Zbl 1240.16047, MR 2813587
Reference: [34] Salim, M. A. M.: Torsion units in the integral group ring of the alternating group of degree 6.Commun. Algebra 35 (2007), 4198-4204. Zbl 1161.16023, MR 2372329, 10.1080/00927870701545069
Reference: [35] : The GAP Group: GAP-Groups, Algorithms and Programming.Version 4.4, 2006, http:/www.gap-system.org.
Reference: [36] Weiss, A.: Rigidity of {$p$}-adic {$p$}-torsion.Ann. Math. (2) 127 (1988), 317-332. Zbl 0647.20007, MR 0932300
Reference: [37] Zassenhaus, H.: On the torsion units of finite group rings.Studies in mathematics Lisbon (1974), 119-126. Zbl 0313.16014, MR 0376747
.

Files

Files Size Format View
CzechMathJ_66-2016-2_20.pdf 275.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo