Full entry |
PDF
(0.4 MB)
Feedback

Lyapunov functional; delay differential equations; third-order differential equations

References:

[1] Ademola, A.T., Arawomo, P.O.: **Uniform stability and boundedness of solutions of nonlinear delay differential equations of third order**. Math. J. Okayama Univ. 55 (2013), 157–166. MR 3026962

[2] Ademola, A.T., Arawomo, P.O., Ogunlaran, O.M., Oyekan, E.A.: **Uniform stability, boundedness and asymptotic behaviour of solutions of some third order nonlinear delay differential equations**. Differential Equations and Control Processes N4 (2013), 43–66.

[3] Afuwape, A.U., Omeike, M.O.: **On the stability and boundedness of solutions of a kind of third order delay differential equations**. Appl. Math. Comput. 200 Issue 1 (2008), 444–451. DOI 10.1016/j.amc.2007.11.037 | MR 2421659 | Zbl 1316.34070

[4] Afuwape, A.U., Omeike, M.O.: **Stability and boundedness of solutions of a kind of third-order delay differential equations**. Computational and Applied Mathematics 29 (3) (2010), 329–342. DOI 10.1590/S1807-03022010000300001 | MR 2740657 | Zbl 1216.34068

[5] Agarwal, R., O’Regan, D.: **Singular problems modelling phenomena in the theory of pseudoplastic fluids**. ANZIAM J. 45 (2003), 167–179. DOI 10.1017/S1446181100013249 | MR 2017741 | Zbl 1201.35155

[6] Bai, Y., Guo, C.: **New results on stability and boundedness of third order nonlinear delay differential equations**. Dynam. Systems Appl. 22 (1) (2013), 95–104. MR 3098746 | Zbl 1302.34107

[7] Burton, T.A.: **Stability and periodic solutions of ordinary and functional differential equations**. Math. Sci. Engrg. 178 (1985). MR 0837654 | Zbl 0635.34001

[8] Burton, T.A.: **Volterra Integral and Differential Equations**. Math. Sci. Engrg. 202 (2005), 2nd edition. MR 2155102 | Zbl 1075.45001

[9] Élsgolts, L. É.: **Introduction to the theory of differential equations with deviating arguments**. London-Amsterdam, 1966, Translated from the Russian by Robert J. McLaughlin Holden-Day,Inc.,San Francisco, Calif. MR 0192154

[10] Gregus, M.: **Third Order Linear Differential Equations**. Reidel, Dordrecht, 1987. MR 0882545 | Zbl 0602.34005

[11] Juan, Zhang Li, Geng, Si Li: **Globally asymptotic stability of a class of third order nonlinear system**. Acta Math. Appl. Sinica 30 (1) (2007), 99–103. MR 2339313

[12] Omeike, M.O.: **Stability and boundedness of solutions of some non-autonomous delay differential equation of the third order**. An. Ştiinţ. Univ. Al. I. Cuza Iaşi Mat. (N.S.) 55 (1) (2009), 49–58. MR 2510712 | Zbl 1199.34390

[13] Omeike, M.O.: **New results on the stability of solution of some non-autonomous delay differential equations of the third order**. Differential Equations and Control Processes 1 (2010), 18–29. MR 2766411

[14] O’Regan, D.: **Topological Transversality: Application to third-order boundary value problem**. SIAM. J. Math. Anal. 18 (3) (1987), 630–641. DOI 10.1137/0518048 | MR 0883557

[15] Oudjedi, L., Beldjerd, D., Remili, M.: **On the stability of solutions for non-autonomous delay differential equations of third-order**. Differential Equations and Control Processes 1 (2014), 22–34.

[16] Remili, M., Beldjerd, D.: **On the asymptotic behavior of the solutions of third order delay differential equations**. Rend. Circ. Mat. Palermo 63 (2014), 447–455. DOI 10.1007/s12215-014-0169-3 | MR 3298595 | Zbl 1321.34097

[17] Remili, M., Oudjedi, L.D.: **Stability and boundedness of the solutions of non autonomous third order differential equations with delay**. Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 53 (2) (2014), 139–147. MR 3331011

[18] Sadek, A.I.: **Stability and boundedness of a kind of third-order delay differential system**. Appl. Math. Lett. 16 (5) (2003), 657–662. DOI 10.1016/S0893-9659(03)00063-6 | MR 1986031 | Zbl 1056.34078

[19] Sadek, A.I.: **On the stability of solutions of somenon-autonomous delay differential equations of the third order**. Asymptot. Anal. 43 (2) (2005), 1–7. MR 2148124

[20] Swick, K.: **On the boundedness and the stability of solutions of some non-autonomous differential equations of the third order**. J. London Math. Soc. 44 (1969), 347–359. DOI 10.1112/jlms/s1-44.1.347 | MR 0236482 | Zbl 0164.39103

[21] Tunç, C.: **Stability and boundedness of solutions of nonlinear differential equations of third-order with delay**. J. Differential Equations and Control Processes 3 (2007), 1–13. MR 2384532

[22] Tunç, C.: **On the stability of solutions for non-autonomous delay differential equations of third-order**. Iran. J. Sci. Technol. Trans. A Sci. 32 (4) (2008), 261–273. MR 2683011

[23] Tunç, C.: **Boundedness in third order nonlinear differential equations with bounded delay**. Bol. Mat. (N.S.) 16 (1) (2009), 1–10. MR 2891067 | Zbl 1256.34055

[24] Tunç, C.: **On the stability and boundedness of solutions to third order nonlinear differential equations with retarded argument**. Nonlinear Dynam. 57 (1–2) (2009), 97–106. DOI 10.1007/s11071-008-9423-6 | MR 2511159 | Zbl 1176.34064

[25] Tunç, C.: **Stability criteria for certain third order nonlinear delay differential equations**. Portugal. Math. 66 (1) (2009), 71–80. DOI 10.4171/PM/1831 | MR 2512821 | Zbl 1166.34329

[26] Tunç, C.: **Some stability and boundedness conditions for non-autonomous differential equations with deviating arguments**. Electron. J. Qual. Theory Differ. Equ. 1 (2010), 1–12. DOI 10.14232/ejqtde.2010.1.1 | MR 2577154 | Zbl 1201.34123

[27] Tunç, C.: **Stability and bounded of solutions to non-autonomous delay differential equations of third order**. Nonlinear Dynam. 62 (2010), 945–953. DOI 10.1007/s11071-010-9776-5 | MR 2745954 | Zbl 1215.34079

[28] Tunç, C.: **Stability and boundedness of the nonlinear differential equations of third order with multiple deviating arguments**. Afrika Mat. (3) 24 (3) (2013), 381–390. DOI 10.1007/s13370-012-0067-9 | MR 3090565 | Zbl 1291.34111

[29] Tunç, C.: **On the stability and boundedness of certain third order non-autonomous differential equations of retarded type**. Proyecciones 34 (2) (2015), 147–159. DOI 10.4067/S0716-09172015000200004 | MR 3358608 | Zbl 1332.34115

[30] Tunç, C., Gözen, M.: **Stability and uniform boundedness in multidelay functional differential equations of third order**. Abstr. Appl. Anal. 7 (2013), 1–8. MR 3055944 | Zbl 1276.34058

[31] Yao, H., Wang, J.: **Globally asymptotic stability of a kind of third-order delay differential system**. Int. J. Nonlinear Sci. 10 (1) (2010), 82–87. MR 2721073 | Zbl 1235.34198

[32] Zhang, Z., Wang, J., Shi, W.: **A boundary layer problem arising in gravity-driven laminar film flow of power-law fluids along vertical walls**. Z. Angew. Math. Phys. 55 (5) (2004), 169–780. DOI 10.1007/s00033-004-1122-7 | MR 2087764 | Zbl 1059.76007

[33] Zhao, J., Deng, Y.: **Asymptotic stability of a certain third-order delay differential equation**. J. Math. (Wuhan) 34 (2) (2014), 319–323. MR 3202424

[34] Zhu, Y.F.: **On stability, boundedness and existence of periodic solution of a kind of third order nonlinear delay differential system**. Ann. Differential Equations 8 (2) (1992), 249–259. MR 1190138 | Zbl 0758.34072