[2] Bliedtner J., Hansen W.:
Potential theory. An analytic and probabilistic approach to balayage. Universitext, Springer, Berlin, 1986.
MR 0850715 |
Zbl 0706.31001
[3] Boboc N., Bucur Gh.:
Perturbations in excessive structures. Complex analysis–fifth Romanian-Finnish seminar, Part 2 (Bucharest, 1981), Lecture Notes in Math., 1014, Springer, Berlin, 1983, pp. 155–187.
MR 0738120 |
Zbl 0534.47008
[4] Bouleau N.:
Semi-groupe triangulaire associé à un espace biharmonique. C.R. Acad. Sci. Paris Sér. A-B 288 (1979), no. 7, A415–A417.
MR 0552066 |
Zbl 0405.31009
[5] Bouleau N.:
Couplage de deux semi-groupes droites. C.R. Acad. Sci. Paris Sér. A-B 288 (1979), no. 8, A465–A467.
MR 0527698
[6] Bouleau N.:
Espaces biharmoniques et couplage de processus de Markov. J. Math. Pures Appl. (9) 59 (1980), no. 2, 187–240.
MR 0581988 |
Zbl 0403.60068
[10] Constantinescu C.A., Cornea A.:
Potential Theory on Harmonic Spaces. Springer, New York-Heidelberg, 1972.
MR 0419799 |
Zbl 0248.31011
[11] Doob J.L:
Classical Potential Theory and its Probabilistic Counterpart. Springer, New York, 1984.
MR 0731258 |
Zbl 0990.31001
[12] El Kadiri M.:
Sur la représentation intégrale en théorie axiomatique des fonctions biharmoniques. Rev. Roumaine Math. Pures Appl. 42 (1997), no. 7–8, 579–589.
MR 1650389 |
Zbl 1089.31501
[14] El Kadiri M., Haddad S.:
Comportement des fonctions bisurharmoniques et problème de Riquier fin à la frontière de Martin biharmonique. Algebras Groups Geom. 24 (2007), 155–186.
MR 2345849 |
Zbl 1148.31007
[16] Gazzola F., Grunau H.-C., Sweers G.:
Polyharmonic boundary value problems. Positivity preserving and nonlinear higher order elliptic equations in bounded domains. Lecture Notes in Mathematics, 1991, Springer, Berlin, 2010.
MR 2667016 |
Zbl 1239.35002
[17] Grunau H.-C., Sweers G.:
Positivity properties of elliptic boundary value problems of higher order. Proceedings of the Second World Congress of Nonlinear Analysts, Part 8 (Athens, 1996), Nonlinear Anal. 30 (1997), no. 8, 5251–5258.
MR 1726027 |
Zbl 0894.35016
[19] Hansen W.:
Harnack inequalities for Schrödinger operators. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28 (1999), no. 3, 413–470.
MR 1736524 |
Zbl 0940.35063
[21] Helms L.L.:
Introduction to Potential Theory. Pure and Applied Mathematics, Vol. XXII, Wiley-Interscience A Division of John Wiley and Sons, New York-London-Sydney, 1969.
MR 0261018 |
Zbl 0188.17203
[23] Janssen K.:
On the Martin boundary of weakly coupled balayage spaces. Rev. Roumaine Math. Pures Appl. 51 (2006), no. 5–6, 655–664.
MR 2320915 |
Zbl 1120.31005