Title:
|
The $\sigma$-property in $C(X)$ (English) |
Author:
|
Hager, Anthony W. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
57 |
Issue:
|
2 |
Year:
|
2016 |
Pages:
|
231-239 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The $\sigma$-property of a Riesz space (real vector lattice) $B$ is: For each sequence $\{b_{n}\}$ of positive elements of $B$, there is a sequence $\{\lambda_{n}\}$ of positive reals, and $b\in B$, with $\lambda_{n}b_{n}\leq b$ for each $n$. This condition is involved in studies in Riesz spaces of abstract Egoroff-type theorems, and of the countable lifting property. Here, we examine when ``$\sigma$'' obtains for a Riesz space of continuous real-valued functions $C(X)$. A basic result is: For discrete $X$, $C(X)$ has $\sigma$ iff the cardinal $|X|< \mathfrak{b}$, Rothberger's bounding number. Consequences and generalizations use the Lindelöf number $L(X)$: For a $P$-space $X$, if $L(X)\leq \mathfrak{b}$, then $C(X)$ has $\sigma$. For paracompact $X$, if $C(X)$ has $\sigma$, then $L(X)\leq \mathfrak{b}$, and conversely if $X$ is also locally compact. For metrizable $X$, if $C(X)$ has $\sigma$, then $X$ \textit{is} locally compact. (English) |
Keyword:
|
Riesz space |
Keyword:
|
$\sigma$-property |
Keyword:
|
bounding number |
Keyword:
|
$P$-space |
Keyword:
|
paracompact |
Keyword:
|
locally compact |
MSC:
|
03E17 |
MSC:
|
06F20 |
MSC:
|
46A40 |
MSC:
|
54A25 |
MSC:
|
54C30 |
MSC:
|
54D20 |
MSC:
|
54D45 |
MSC:
|
54G10 |
idZBL:
|
Zbl 06604503 |
idMR:
|
MR3513446 |
DOI:
|
10.14712/1213-7243.2015.162 |
. |
Date available:
|
2016-07-05T15:10:41Z |
Last updated:
|
2018-07-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/145753 |
. |
Reference:
|
[BGHTZ09] Ball R., Gochev V., Hager A., Todorčević S., Zoble S.: Topological group criterion for $C(X)$ in compact-open-like topologies I..Topology Appl. 156 (2009), 710–720. Zbl 1166.54007, MR 2492956 |
Reference:
|
[BJ86] Blass A., Jech T.: On the Egoroff property of pointwise convergent sequences of functions.Proc. Amer. Math. Society 90 (1986), 524–526. Zbl 0601.54004, MR 0857955, 10.1090/S0002-9939-1986-0857955-3 |
Reference:
|
[D74] Dodds, Theresa K.Y. Chow: Egoroff properties and the order topology in Riesz spaces.Trans. Amer. Math. Soc. 187 (1974), 365–375. MR 0336282, 10.1090/S0002-9947-1974-0336282-3 |
Reference:
|
[D84] van Douwen E.: The integers and topology.in Handbook of Set-theoretic Topology, North-Holland, Amsterdam, 1984, pp. 111–1676. Zbl 0561.54004, MR 0776622 |
Reference:
|
[E89] Engelking R.: General Topology.Heldermann, Berlin, 1989. Zbl 0684.54001, MR 1039321 |
Reference:
|
[GJ60] Gillman L., Jerison M.: Rings of Continuous Functions.The University Series in Higher Mathematics, Van Nostrand, Princeton, N.J.-Toronto-London-New York, 1960. Zbl 0327.46040, MR 0116199 |
Reference:
|
[HM15] Hager A., van Mill J.: Egoroff, $\sigma$, and convergence properties in some archimedean vector lattices.Studia Math. 231 (2015), 269–285. MR 3471054 |
Reference:
|
[HR16] Hager A., Raphael R.: The countable lifting property for Riesz space surjections.Indag. Math., 27 (2016), 75–84. MR 3437737, 10.1016/j.indag.2015.07.005 |
Reference:
|
[H68] Holbrook J.: Seminorms and the Egoroff property in Riesz spaces.Trans. Amer. Math. Soc. 132 (1968), 67–77. Zbl 0169.14802, MR 0228979, 10.1090/S0002-9947-1968-0228979-8 |
Reference:
|
[J80] Jech T.: On a problem of L. Nachbin.Proc. Amer. Math. Soc. 79 (1980), 341–342. Zbl 0441.04002, MR 0565368, 10.1090/S0002-9939-1980-0565368-1 |
Reference:
|
[J02] Jech T.: Set Theory.third millennium edition, Springer, Berlin, 2003. Zbl 1007.03002, MR 1940513 |
Reference:
|
[LZ71] Luxemburg W.A.J., Zaanen A.C.: Riesz Spaces.Vol. I, North-Holland Mathematical Library, North-Holland, Amsterdam-London, 1971. Zbl 0231.46014, MR 0511676 |
. |