Previous |  Up |  Next

Article

Title: On preimages of ultrafilters in ZF (English)
Author: Herrlich, Horst
Author: Howard, Paul
Author: Keremedis, Kyriakos
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 57
Issue: 2
Year: 2016
Pages: 241-252
Summary lang: English
.
Category: math
.
Summary: We show that given infinite sets $X,Y$ and a function $f:X\rightarrow Y$ which is onto and $n$-to-one for some $n\in \mathbb{N}$, the preimage of any ultrafilter $\mathcal{F}$ of $Y$ under $f$ extends to an ultrafilter. We prove that the latter result is, in some sense, the best possible by constructing a permutation model $\mathcal{M}$ with a set of atoms $A$ and a finite-to-one onto function $f:A\rightarrow \omega $ such that for each free ultrafilter of $\omega $ its preimage under $f$ does not extend to an ultrafilter. In addition, we show that in $\mathcal{M}$ there exists an ultrafilter compact pseudometric space $\mathbf{X}$ such that its metric reflection $\mathbf{X}^{\ast }$ is not ultrafilter compact. (English)
Keyword: Boolean Prime Ideal Theorem
Keyword: weak forms of the axiom of choice
Keyword: ultrafilters
MSC: 06E15
MSC: 54D30
MSC: 54E35
idZBL: Zbl 06604504
idMR: MR3513447
DOI: 10.14712/1213-7243.2015.159
.
Date available: 2016-07-05T15:11:16Z
Last updated: 2018-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/145755
.
Reference: [1] Herrlich H., Howard P., Keremedis K.: On extensions of countable filterbases to ultrafilters and ultrafilter compactness.submitted manuscript.
Reference: [2] Herrlich H., Keremedis K.: On the metric reflection of a pseudometric space in $\mathbf{ZF}$.Comment. Math. Univ. Carolin. 56 (2015), 77–88. MR 3311579
Reference: [3] Hall E., Keremedis K., Tachtsis E.: The existence of free ultrafilters on $\omega $ does not imply the extension of filters on $\omega $ to ultrafilters.Math. Logic Quart. 59 (2013), 158–267. MR 3100753, 10.1002/malq.201100092
Reference: [4] Howard P., Rubin J. E.: Consequences of the Axiom of Choice.Math. Surveys and Monographs, 59, American Mathematical Society, Providence, R.I., 1998. Zbl 0947.03001, MR 1637107, 10.1090/surv/059
Reference: [5] Jech T.: The Axiom of Choice.North-Holland Publishing Co., Amsterdam-London, 1973. Zbl 0259.02052, MR 0396271
Reference: [6] Keremedis K.: Tychonoff products of two-element sets and some weakenings of the Boolean Prime Ideal Theorem.Bull. Pol. Acad. Sci. Math. 53 (2005), no. 4, 349–359. Zbl 1112.03044, MR 2214925, 10.4064/ba53-4-1
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_57-2016-2_8.pdf 292.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo