Previous |  Up |  Next

Article

Keywords:
heat equation; diffusion coefficient; spectral element methods; a priori estimates
Summary:
We are interested in the discretization of the heat equation with a diffusion coefficient depending on the space and time variables. The discretization relies on a spectral element method with respect to the space variables and Euler's implicit scheme with respect to the time variable. A detailed numerical analysis leads to optimal a priori error estimates.
References:
[1] Bergam A., Bernardi C., Mghazli Z.: A posteriori analysis of the finite element discretization of some parabolic equations. Math. Comp. 74 (2005), 1117–1138. DOI 10.1090/S0025-5718-04-01697-7 | MR 2136996 | Zbl 1072.65124
[2] Bernardi C., Maday Y.: Spectral Methods. Handbook of Numerical Analysis V, P.G. Ciarlet and J.-L. Lions, Eds., North-Holland, Amsterdam, 1997. MR 1470226 | Zbl 0929.35001
[3] Bernardi C., Maday Y., Rapetti F.: Discrétisations variationnelles de problèmes aux limites elliptiques. Mathématiques et Applications, 45, Springer, Berlin, 2004. MR 2068204 | Zbl 1063.65119
[4] Chorfi N., Abdelwahed M., Ben Omrane I.: A posteriori analysis of the spectral element discretization of the heat equation. An. Stiint. Univ. “Ovidius” Constanta Ser. Mat. 22 (2014), no. 3, 13–35. MR 3215895
[5] Lions J.-L., Magenes E.: Problèmes aux limites non homogènes et applications. vol. 1, Dunod, Paris, 1968. MR 0247243 | Zbl 0212.43801
[6] Thomée V.: Galerkin Finite Element Methods for Parabolic Problems. Springer Series in Computational Mathematics, 25, Springer, Berlin, 1997. MR 1479170
[7] Touihri M.: Discrétisation spectrale des equations de Navier-Stokes à densité variable. PhD, Pierre et Marie Curie University, Paris 6, France, 1997.
Partner of
EuDML logo