Previous |  Up |  Next

Article

Title: Spectral element discretization of the heat equation with variable diffusion coefficient (English)
Author: Daikh, Y.
Author: Chikouche, W.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 57
Issue: 2
Year: 2016
Pages: 185-200
Summary lang: English
.
Category: math
.
Summary: We are interested in the discretization of the heat equation with a diffusion coefficient depending on the space and time variables. The discretization relies on a spectral element method with respect to the space variables and Euler's implicit scheme with respect to the time variable. A detailed numerical analysis leads to optimal a priori error estimates. (English)
Keyword: heat equation
Keyword: diffusion coefficient
Keyword: spectral element methods
Keyword: a priori estimates
MSC: 35B45
MSC: 35K05
MSC: 65N35
idZBL: Zbl 1363.35146
idMR: MR3513444
DOI: 10.14712/1213-7243.2015.160
.
Date available: 2016-07-05T15:06:11Z
Last updated: 2018-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/145756
.
Reference: [1] Bergam A., Bernardi C., Mghazli Z.: A posteriori analysis of the finite element discretization of some parabolic equations.Math. Comp. 74 (2005), 1117–1138. Zbl 1072.65124, MR 2136996, 10.1090/S0025-5718-04-01697-7
Reference: [2] Bernardi C., Maday Y.: Spectral Methods.Handbook of Numerical Analysis V, P.G. Ciarlet and J.-L. Lions, Eds., North-Holland, Amsterdam, 1997. Zbl 0929.35001, MR 1470226
Reference: [3] Bernardi C., Maday Y., Rapetti F.: Discrétisations variationnelles de problèmes aux limites elliptiques.Mathématiques et Applications, 45, Springer, Berlin, 2004. Zbl 1063.65119, MR 2068204
Reference: [4] Chorfi N., Abdelwahed M., Ben Omrane I.: A posteriori analysis of the spectral element discretization of the heat equation.An. Stiint. Univ. “Ovidius” Constanta Ser. Mat. 22 (2014), no. 3, 13–35. MR 3215895
Reference: [5] Lions J.-L., Magenes E.: Problèmes aux limites non homogènes et applications.vol. 1, Dunod, Paris, 1968. Zbl 0212.43801, MR 0247243
Reference: [6] Thomée V.: Galerkin Finite Element Methods for Parabolic Problems.Springer Series in Computational Mathematics, 25, Springer, Berlin, 1997. MR 1479170
Reference: [7] Touihri M.: Discrétisation spectrale des equations de Navier-Stokes à densité variable.PhD, Pierre et Marie Curie University, Paris 6, France, 1997.
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_57-2016-2_5.pdf 310.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo