Previous |  Up |  Next

Article

Title: Globally uniformly ultimately bounded observer design for a class of nonlinear systems with sampled and delayed measurements (English)
Author: Zhang, Daoyuan
Author: Shen, Yanjun
Author: Xia, Xiaohua
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 52
Issue: 3
Year: 2016
Pages: 441-460
Summary lang: English
.
Category: math
.
Summary: In this paper, we consider two kinds of sampled-data observer design for a class of nonlinear systems. The system output is sampled and transmitted under two kinds of truncations. Firstly, we present definitions of the truncations and the globally uniformly ultimately bounded observer, respectively. Then, two kinds of observers are proposed by using the delayed measurements with these two truncations, respectively. The observers are hybrid in essence. For the first kind of observers, by constructing a Lyapunov-Krasovskii functional, sufficient conditions of globally uniformly ultimately bounded of the estimation errors are derived, and the maximum allowable sampling period and the maximum delay are also given. For the second ones, sufficient conditions are also given to ensure that the estimation errors are globally uniformly ultimately bounded. Finally, an example is provided to illustrate the design methods. (English)
Keyword: nonlinear systems
Keyword: continuous observers
Keyword: sampled output
Keyword: delayed measurements
MSC: 93C10
MSC: 93C57
idZBL: Zbl 06644304
idMR: MR3532516
DOI: 10.14736/kyb-2016-3-0441
.
Date available: 2016-07-17T12:18:32Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/145785
.
Reference: [1] Ahmed-Ali, T., Lamnabhi-Lagarrigue, F.: High gain observer design for some networked control systems..IEEE Trans. Automat. Control 57 (2012), 995-1000. MR 2952330, 10.1109/tac.2011.2168049
Reference: [2] Ahmed-Ali, T., Assche, V. Van, Massieu, J., Dorleans, P.: Continuous-discrete observer for state affine systems with sampled and delayed measurements..IEEE Trans. Automat. Control 58 (2013), 1085-1091. MR 3038816, 10.1109/tac.2012.2225555
Reference: [3] Ahmed-Ali, T., Karafyllis, I., Lamnabhi-Lagarrigue, F.: Global exponential sampled-data observers for nonlinear systems with delayed measurements..Syst. Control Lett. 62 (2013), 539-549. Zbl 1277.93051, MR 3068156, 10.1016/j.sysconle.2013.03.008
Reference: [4] Andrieu, V., Praly, L., Astolfi, A.: High gain observers with updated high-gain and homogeneous correction terms..Automatica 45 (2009), 422-428. MR 2527338, 10.1016/j.automatica.2008.07.015
Reference: [5] Arcak, M., Nešić, D.: A framework for nonlinear sampled-data observer design via approximate discrete-time models and emulation..Automatica 40 (2004), 1931-1938. Zbl 1059.93081, MR 2156001, 10.1016/j.automatica.2004.06.004
Reference: [6] Biyik, E., Arcak, M.: A hybrid redesign of newton observers in the absence of an exact discrete-time model..Automatica 55 (2006), 429-436. Zbl 1129.93330, MR 2216751, 10.1016/j.sysconle.2005.09.005
Reference: [7] Gauthier, J., Hammouri, H., Othman, S.: A simple observer for nonlinear systems applications to bioreactors..IEEE Trans. Automat. Control 37 (1992), 875-880. Zbl 0775.93020, MR 1164571, 10.1109/9.256352
Reference: [8] Karafyllis, I., Kravaris, C.: From continuous time design to sampled-data design of observers..IEEE Trans. Automat. Control 54 (2009), 2169-2174. MR 2567944, 10.1109/tac.2009.2024390
Reference: [9] Li, Y., Shen, Y., Xia, X.: Global finite-time observers for a class of nonlinear systems..Kybernetika 49 (2013), 319-340. Zbl 1264.93029, MR 3085399
Reference: [10] Li, Y., Xia, X., Shen, Y.: A high-gain-based global finite-time nonlinear observer..Int. J. Control 86 (2013), 759-767. Zbl 1278.93060, MR 3054465, 10.1080/00207179.2012.760045
Reference: [11] Liu, Y., Wang, Z., Liu, X.: On global exponential stability of generalized stochastic netural networks with mixed time-delays..Neurocomputing 70 (2006), 314-326. 10.1016/j.neucom.2006.01.031
Reference: [12] Nadri, H., Hammouri, H., Mota, R.: Observer design for uniformly observable systems with sampled measurements..IEEE Trans. Automat. Control 58 (2013), 757-762. MR 3029473, 10.1109/tac.2012.2212517
Reference: [13] Praly, L.: Asymptotic stabilization via output feedback for lower triangular systems with output dependent incremental rate..IEEE Trans. Automat. Control 48 (2003), 1103-1108. MR 1986287, 10.1109/tac.2003.812819
Reference: [14] Shen, Y., Huang, Y.: Uniformly observable and globally lipschitzian nonlinear systems admit global finite-time observers..IEEE Trans. Automat. Control 54 (2009), 995-1006. MR 2571925, 10.1109/tac.2009.2029298
Reference: [15] Shen, Y., Xia, X.: Semi-global finite-time observers for nonlinear systems..Automatica 44 (2008), 3152-3156. Zbl 1153.93332, MR 2531419, 10.1016/j.automatica.2008.05.015
Reference: [16] Assche, V. Van, Ahmed-Ali, T., Ham, C., Lamnabhi-Lagarrigue, F.: High gain observer design for nonlinear systems with time varying delayed measurements..In: 18th IFAC World Congress, Milan 2011, pp. 692-696. 10.3182/20110828-6-it-1002.02421
Reference: [17] Zhang, D., Shen, Y., Shen, Y.: Continuous observer design for nonlinear systems based on sampled output measurements..In: 33rd Chinese Control Conference, Nanjing 2014, pp. 3909-3914. 10.1109/chicc.2014.6895591
Reference: [18] Zhang, D., Shen, Y., Xia, X.: Continuous observer design for nonlinear systems with sampled and delayed output measurements..In: 19th IFAC World Congress, Cape Town 2014, pp. 269-274. 10.3182/20140824-6-za-1003.00819
.

Files

Files Size Format View
Kybernetika_52-2016-3_7.pdf 864.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo