Previous |  Up |  Next

Article

Title: Iterated Boolean random varieties and application to fracture statistics models (English)
Author: Jeulin, Dominique
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 61
Issue: 4
Year: 2016
Pages: 363-386
Summary lang: English
.
Category: math
.
Summary: Models of random sets and of point processes are introduced to simulate some specific clustering of points, namely on random lines in $ \mathbb {R}^{2}$ and $\mathbb {R} ^{3}$ and on random planes in $ \mathbb {R}^{3}$. The corresponding point processes are special cases of Cox processes. The generating distribution function of the probability distribution of the number of points in a convex set $K$ and the Choquet capacity $T(K)$ are given. A possible application is to model point defects in materials with some degree of alignment. Theoretical results on the probability of fracture of convex specimens in the framework of the weakest link assumption are derived, and used to compare geometrical effects on the sensitivity of materials to fracture. (English)
Keyword: Boolean model
Keyword: Boolean varieties
Keyword: Cox process
Keyword: weakest link model
Keyword: fracture statistics
Keyword: mathematical morphology
MSC: 52A22
MSC: 60D05
MSC: 60G55
idZBL: Zbl 06644002
idMR: MR3532249
DOI: 10.1007/s10492-016-0137-7
.
Date available: 2016-08-01T09:21:46Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/145791
.
Reference: [1] Delisée, Ch., Jeulin, D., Michaud, F.: Caractérisation morphologique et porosité en 3D de matériaux fibreux cellulosiques.C.R. Académie des Sciences de Paris, t. 329, Série II b French (2001), 179-185.
Reference: [2] Dirrenberger, J., Forest, S., Jeulin, D.: Towards gigantic RVE sizes for 3D stochastic fibrous networks.Int. J. Solids Struct. 51 (2014), 359-376. 10.1016/j.ijsolstr.2013.10.011
Reference: [3] Faessel, M., Jeulin, D.: 3D multiscale vectorial simulations of random models.Proceedings of ICS13 (2011), 19-22.
Reference: [4] Jeulin, D.: Modèles Morphologiques de Structures Aléatoires et de Changement d'Echelle.Thèse de Doctorat d'Etat è s Sciences Physiques, Université de Caen (1991).
Reference: [5] Jeulin, D.: Modèles de Fonctions Aléatoires multivariables.Sci. Terre French 30 (1991), 225-256.
Reference: [6] Jeulin, D.: Random structure models for composite media and fracture statistics.Advances in Mathematical Modelling of Composite Materials (1994), 239-289.
Reference: [7] Jeulin, D.: Random structure models for homogenization and fracture statistics.Mechanics of Random and Multiscale Microstructures D. Jeulin, M. Ostoja-Starzewski CISM Courses Lect. 430, Springer, Wien (2001), 33-91. Zbl 1010.74004, 10.1007/978-3-7091-2780-3_2
Reference: [8] Jeulin, D.: Morphology and effective properties of multi-scale random sets.A review, C. R. Mecanique 340 (2012), 219-229. 10.1016/j.crme.2012.02.004
Reference: [9] Jeulin, D.: Boolean random functions.Stochastic Geometry, Spatial Statistics and Random Fields. Models and Algorithms V. Schmidt Lecture Notes in Mathematics 2120, Springer, Cham (2015), 143-169. Zbl 1366.60013, MR 3330575
Reference: [10] Jeulin, D.: Power laws variance scaling of Boolean random varieties.Methodol. Comput. Appl. Probab. (2015), 1-15, DOI: 10.1007/s11009-015-9464-5. MR 3564853, 10.1007/s11009-015-9464-5
Reference: [11] Maier, R., Schmidt, V.: Stationary iterated tessellations.Adv. Appl. Probab. 35 (2003), 337-353. Zbl 1041.60012, MR 1970476, 10.1017/S000186780001226X
Reference: [12] Matheron, G.: Random Sets and Integral Geometry.Wiley Series in Probability and Mathematical Statistics John Wiley & Sons, New York (1975). Zbl 0321.60009, MR 0385969
Reference: [13] Nagel, W., Weiss, V.: Limits of sequences of stationary planar tessellations.Adv. Appl. Probab. 35 (2003), 123-138. Zbl 1023.60015, MR 1975507, 10.1017/S0001867800012118
Reference: [14] Schladitz, K., Peters, S., Reinel-Bitzer, D., Wiegmann, A., Ohser, J.: Design of acoustic trim based on geometric modeling and flow simulation for non-woven.Computational Materials Science 38 (2006), 56-66. 10.1016/j.commatsci.2006.01.018
.

Files

Files Size Format View
AplMat_61-2016-4_2.pdf 425.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo