Previous |  Up |  Next


Title: Asymptotic properties of the minimum contrast estimators for projections of inhomogeneous space-time shot-noise Cox processes (English)
Author: Dvořák, Jiří
Author: Prokešová, Michaela
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 61
Issue: 4
Year: 2016
Pages: 387-411
Summary lang: English
Category: math
Summary: We consider a flexible class of space-time point process models---inhomogeneous shot-noise Cox point processes. They are suitable for modelling clustering phenomena, e.g. in epidemiology, seismology, etc. The particular structure of the model enables the use of projections to the spatial and temporal domain. They are used to formulate a step-wise estimation method to estimate different parts of the model separately. In the first step, the Poisson likelihood approach is used to estimate the inhomogeneity parameters. In the second and third steps, the minimum contrast estimation based on $K$-functions of the projected processes is used to estimate the interaction parameters. We study the asymptotic properties of the resulting estimators and formulate a set of conditions sufficient for establishing consistency and asymptotic normality of the estimators under the increasing domain asymptotics. (English)
Keyword: space-time point process
Keyword: shot-noise Cox process
Keyword: minimum contrast estimation
Keyword: projection process
Keyword: increasing domain asymptotics
MSC: 60G55
MSC: 62F12
idZBL: Zbl 06644003
idMR: MR3532250
DOI: 10.1007/s10492-016-0138-6
Date available: 2016-08-01T09:23:21Z
Last updated: 2018-09-03
Stable URL:
Reference: [1] Baddeley, A. J., Møller, J., Waagepetersen, R.: Non- and semi-parametric estimation of interaction in inhomogeneous point patterns.Stat. Neerl. 54 (2000), 329-350. Zbl 1018.62027, MR 1804002, 10.1111/1467-9574.00144
Reference: [2] Daley, D. J., Vere-Jones, D.: An Introduction to the Theory of Point Processes. Vol. II: General Theory and Structure.Probability and Its Applications Springer, New York (2008). Zbl 1159.60003, MR 2371524
Reference: [3] Diggle, P. J.: Spatio-temporal point processes: methods and applications.B. Finkenstädt, et al. Statistical Methods for Spatio-temporal Systems Selected Invited Papers Based on the Presentations at the 6th Séminaire Européen de Statistique SemStat Held as a Summer School of the European Mathematical Society, Bernried, 2004, Chapman and Hall/CRC, Boca Raton, 2007 Monographs on Statistics and Applied Probability {\it 107} (2007), 1-45. Zbl 1121.62080, MR 2307967
Reference: [4] Doukhan, P.: Mixing: Properties and Examples.Lecture Notes in Statistics 85 Springer, New York (1994). Zbl 0801.60027, MR 1312160, 10.1007/978-1-4612-2642-0_3
Reference: [5] Dvořák, J., Prokešová, M.: Parameter estimation for inhomogeneous space-time shot-noise Cox point processes.(to appear) in Scand. J. Stat. MR 3199056
Reference: [6] Gabriel, E.: Estimating second-order characteristics of inhomogeneous spatio-temporal point processes.Methodol. Comput. Appl. Probab. 16 (2014), 411-431. Zbl 1308.60061, MR 3199055, 10.1007/s11009-013-9358-3
Reference: [7] Gabriel, E., Diggle, P. J.: Second-order analysis of inhomogeneous spatio-temporal point process data.Stat. Neerl. 63 (2009), 43-51. MR 2656916, 10.1111/j.1467-9574.2008.00407.x
Reference: [8] Guyon, X.: Random Fields on a Network. Modeling, Statistics, and Applications.Probability and Its Applications Springer, New York (1995). Zbl 0839.60003, MR 1344683
Reference: [9] Hager, W. W.: Minimizing a quadratic over a sphere.SIAM J. Optim. 12 (2001), 188-208. Zbl 1058.90045, MR 1870591, 10.1137/S1052623499356071
Reference: [10] Hellmund, G., Prokešová, M., Jensen, E. B. V.: Lévy-based Cox point processes.Adv. Appl. Probab. 40 (2008), 603-629. Zbl 1149.60031, MR 2454025, 10.1017/S0001867800002718
Reference: [11] Kar{á}csony, Z.: A central limit theorem for mixing random fields.Miskolc Math. Notes 7 (2006), 147-160. Zbl 1120.41301, MR 2310274
Reference: [12] Motzkin, Th.: From among {$n$} conjugate algebraic integers, {$n-1$} can be approximately given.Bull. Am. Math. Soc. 53 (1947), 156-162. Zbl 0032.24702, MR 0019653, 10.1090/S0002-9904-1947-08772-3
Reference: [13] Møller, J.: Shot noise Cox processes.Adv. Appl. Probab. 35 (2003), 614-640. Zbl 1045.60007, MR 1990607, 10.1017/S0001867800012465
Reference: [14] Møller, J., Ghorbani, M.: Aspects of second-order analysis of structured inhomogeneous spatio-temporal point processes.Stat. Neerl. 66 (2012), 472-491. MR 2983306, 10.1111/j.1467-9574.2012.00526.x
Reference: [15] Møller, J., Waagepetersen, R. P.: Statistical Inference and Simulation for Spatial Point Processes.Monographs on Statistics and Applied Probability 100 Chapman & Hall/CRC, Boca Raton (2004). Zbl 1044.62101, MR 2004226
Reference: [16] Prokešová, M., Dvořák, J.: Statistics for inhomogeneous space-time shot-noise Cox processes.Methodol. Comput. Appl. Probab. 16 (2014), 433-449. Zbl 1305.62338, MR 3199056, 10.1007/s11009-013-9324-0
Reference: [17] Prokešová, M., Dvořák, J., Jensen, E. B. V.: Two-step estimation procedures for inhomogeneous shot-noise Cox processes.(to appear) in Ann. Inst. Stat. Math.
Reference: [18] Ripley, B. D.: Statistical Inference for Spatial Processes.Cambridge University Press, Cambridge (1988). Zbl 0705.62090, MR 0971986
Reference: [19] Stoyan, D., Kendall, W. S., Mecke, J.: Stochastic Geometry and Its Applications.Wiley Series in Probability and Mathematical Statistics John Wiley & Sons, Chichester (1995). Zbl 0838.60002, MR 0895588
Reference: [20] Vaart, A. W. van der: Asymptotic Statistics.Cambridge Series in Statistical and Probabilistic Mathematics 3 Cambridge University Press, Cambridge (1998). MR 1652247
Reference: [21] Waagepetersen, R., Guan, Y.: Two-step estimation for inhomogeneous spatial point processes.J. R. Stat. Soc., Ser. B, Stat. Methodol. 71 (2009), 685-702. Zbl 1250.62047, MR 2749914, 10.1111/j.1467-9868.2008.00702.x


Files Size Format View
AplMat_61-2016-4_3.pdf 372.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo