Title:
|
On the strong Brillinger-mixing property of ${\alpha }$-determinantal point processes and some applications (English) |
Author:
|
Heinrich, Lothar |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
61 |
Issue:
|
4 |
Year:
|
2016 |
Pages:
|
443-461 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
First, we derive a representation formula for all cumulant density functions in terms of the non-negative definite kernel function $C(x,y)$ defining an ${\alpha }$-determinantal point process (DPP). Assuming absolute integrability of the function $C_0(x) = C(o,x)$, we show that a stationary ${\alpha }$-DPP with kernel function $C_0(x)$ is ``strongly'' Brillinger-mixing, implying, among others, that its tail-$\sigma $-field is trivial. Second, we use this mixing property to prove rates of normal convergence for shot-noise processes and sketch some applications to statistical second-order analysis of ${\alpha }$-DPPs. (English) |
Keyword:
|
determinantal point process |
Keyword:
|
permanental point process |
Keyword:
|
trivial tail-$\sigma $-field |
Keyword:
|
exponential moment |
Keyword:
|
shot-noise process |
Keyword:
|
Berry-Esseen bound |
Keyword:
|
multiparameter $K$-function |
Keyword:
|
kernel-type product density estimator |
Keyword:
|
goodness-of-fit test |
MSC:
|
60F05 |
MSC:
|
60G55 |
idZBL:
|
Zbl 06644006 |
idMR:
|
MR3532253 |
DOI:
|
10.1007/s10492-016-0141-y |
. |
Date available:
|
2016-08-01T09:27:08Z |
Last updated:
|
2020-07-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/145795 |
. |
Reference:
|
[1] Biscio, C. A. N., Lavancier, F.: Brillinger mixing of determinantal point processes and statistical applications.Electron. J. Stat. (electronic only) 10 582-607 (2016), arXiv: 1507.06506v1 [math ST] (2015). MR 3471989, 10.1214/16-EJS1116 |
Reference:
|
[2] Camilier, I., Decreusefond, L.: Quasi-invariance and integration by parts for determinantal and permanental processes.J. Funct. Anal. 259 (2010), 268-300. Zbl 1203.60050, MR 2610387, 10.1016/j.jfa.2010.01.007 |
Reference:
|
[3] Daley, D. J., Vere-Jones, D.: An Introduction to the Theory of Point Processes. Vol. I: Elementary Theory and Methods.Probability and Its Applications Springer, New York (2003). Zbl 1026.60061, MR 1950431 |
Reference:
|
[4] Daley, D. J., Vere-Jones, D.: An Introduction to the Theory of Point Processes. Vol. II: General Theory and Structure.Probability and Its Applications Springer, New York (2008). Zbl 1159.60003, MR 2371524 |
Reference:
|
[5] Georgii, H.-O., Yoo, H. J.: Conditional intensity and Gibbsianness of determinantal point processes.J. Stat. Phys. 118 (2005), 55-84. Zbl 1130.82016, MR 2122549, 10.1007/s10955-004-8777-5 |
Reference:
|
[6] Heinrich, L.: Asymptotic Gaussianity of some estimators for reduced factorial moment measures and product densities of stationary Poisson cluster processes.Statistics 19 (1988), 87-106. Zbl 0666.62032, MR 0921628, 10.1080/02331888808802075 |
Reference:
|
[7] Heinrich, L.: Gaussian limits of empirical multiparameter $K$-functions of homogeneous Poisson processes and tests for complete spatial randomness.Lith. Math. J. 55 (2015), 72-90. Zbl 1319.60068, MR 3323283, 10.1007/s10986-015-9266-z |
Reference:
|
[8] Heinrich, L.: On the Brillinger-mixing property of stationary point processes.Submitted (2015), 12 pages. |
Reference:
|
[9] Heinrich, L., Klein, S.: Central limit theorem for the integrated squared error of the empirical second-order product density and goodness-of-fit tests for stationary point processes.Stat. Risk Model. 28 (2011), 359-387. Zbl 1277.60085, MR 2877571, 10.1524/strm.2011.1094 |
Reference:
|
[10] Heinrich, L., Klein, S.: Central limit theorems for empirical product densities of stationary point processes.Stat. Inference Stoch. Process. 17 (2014), 121-138. Zbl 1306.60008, MR 3219525, 10.1007/s11203-014-9094-5 |
Reference:
|
[11] Heinrich, L., Prokešová, M.: On estimating the asymptotic variance of stationary point processes.Methodol. Comput. Appl. Probab. 12 (2010), 451-471. Zbl 1197.62122, MR 2665270, 10.1007/s11009-008-9113-3 |
Reference:
|
[12] Heinrich, L., Schmidt, V.: Normal convergence of multidimensional shot noise and rates of this convergence.Adv. Appl. Probab. 17 (1985), 709-730. Zbl 0609.60036, MR 0809427, 10.1017/S0001867800015378 |
Reference:
|
[13] Hough, J. B., Krishnapur, M., Peres, Y., Virág, B.: Zeros of Gaussian Analytic Functions and Determinantal Point Processes.University Lecture Series 51 American Mathematical Society, Providence (2009). Zbl 1190.60038, MR 2552864 |
Reference:
|
[14] Illian, J., Penttinen, A., Stoyan, H., Stoyan, D.: Statistical Analysis and Modelling of Spatial Point Patterns.Statistics in Practice John Wiley & Sons, Chichester (2008). Zbl 1197.62135, MR 2384630 |
Reference:
|
[15] Jolivet, E.: Central limit theorem and convergence of empirical processes for stationary point processes.Point Processes and Queuing Problems, Keszthely, 1978 Colloq. Math. Soc. János Bolyai 24 North-Holland, Amsterdam (1981), 117-161. Zbl 0474.60040, MR 0617406 |
Reference:
|
[16] Karr, A. F.: Estimation of Palm measures of stationary point processes.Probab. Theory Relat. Fields 74 (1987), 55-69. MR 0863718, 10.1007/BF01845639 |
Reference:
|
[17] Karr, A. F.: Point Processes and Their Statistical Inference.Probability: Pure and Applied 7 Marcel Dekker, New York (1991). Zbl 0733.62088, MR 1113698 |
Reference:
|
[18] Lavancier, F., Møller, J., Rubak, E.: Determinantal point process models and statistical inference.J. R. Stat. Soc., Ser. B, Stat. Methodol. 77 (2015), 853-877 arXiv: 1205.4818v1-v5 [math ST] (2012-2014). MR 3382600, 10.1111/rssb.12096 |
Reference:
|
[19] Lenard, A.: States of classical statistical mechanical systems of infinitely many particles. II. Characterization of correlation measures.Arch. Rational Mech. Anal. 59 (1975), 241-256. MR 0391831, 10.1007/BF00251602 |
Reference:
|
[20] Leonov, V. P., Shiryaev, A. N.: On a method of calculation of semi-invariants.Theory Probab. Appl. 4 319-329 (1960), translation from Teor. Veroyatn. Primen. 4 342-355 (1959), Russian 342-355. Zbl 0087.33701, MR 0123345 |
Reference:
|
[21] Macchi, O.: The coincidence approach to stochastic point processes.Adv. Appl. Probab. 7 (1975), 83-122. Zbl 0366.60081, MR 0380979, 10.1017/S0001867800040313 |
Reference:
|
[22] Press, S. J.: Applied Multivariate Analysis: Using Bayesian and Frequentist Methods of Inference.Robert E. Krieger Publishing Company, Malabar (1982). Zbl 0519.62041 |
Reference:
|
[23] Rao, A. R., Bhimasankaram, P.: Linear Algebra.Texts and Readings in Mathematics 19 Hindustan Book Agency, New Delhi (2000). Zbl 0982.15001, MR 1781860 |
Reference:
|
[24] Soshnikov, A.: Determinantal random point fields.Russ. Math. Surv. 55 923-975 (2000), translation from Usp. Mat. Nauk 55 107-160 (2000), Russian. Zbl 0991.60038, MR 1799012, 10.1070/RM2000v055n05ABEH000321 |
Reference:
|
[25] Soshnikov, A.: Gaussian limit for determinantal random point fields.Ann. Probab. 30 (2002), 171-187. Zbl 1033.60063, MR 1894104, 10.1214/aop/1020107764 |
Reference:
|
[26] Statulevičius, V. A.: On large deviations.Z. Wahrscheinlichkeitstheorie Verw. Geb. 6 (1966), 133-144. Zbl 0158.36207, MR 0221560, 10.1007/BF00537136 |
. |