Previous |  Up |  Next

Article

Title: New rotational integrals in space forms, with an application to surface area estimation (English)
Author: Gual-Arnau, Ximo
Author: Cruz-Orive, Luis M.
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 61
Issue: 4
Year: 2016
Pages: 489-501
Summary lang: English
.
Category: math
.
Summary: A surface area estimator for three-dimensional convex sets, based on the invariator principle of local stereology, has recently motivated its generalization by means of new rotational Crofton-type formulae using Morse theory. We follow a different route to obtain related formulae which are more manageable and valid for submanifolds in constant curvature spaces. As an application, we obtain a simplified version of the mentioned surface area estimator for non-convex sets of smooth boundary. (English)
Keyword: critical point
Keyword: height function
Keyword: submanifold in space forms
Keyword: invariator principle
Keyword: local stereology
Keyword: rotational formulae
Keyword: surface area estimation
MSC: 53C65
idZBL: Zbl 06644008
idMR: MR3532255
DOI: 10.1007/s10492-016-0143-9
.
Date available: 2016-08-01T09:30:00Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/145797
.
Reference: [1] Auneau, J., Jensen, E. B. V.: Expressing intrinsic volumes as rotational integrals.Adv. Appl. Math. 45 (2010), 1-11. Zbl 1202.60018, MR 2628780, 10.1016/j.aam.2009.11.010
Reference: [2] Blaschke, W.: Integralgeometrie 1.Actualités Scientifiques et Industrielles 252 Hermann & Cie., Paris German (1935).
Reference: [3] Cartan, E.: Le principe de dualité et certaines intégrales multiples de l'espace tangentiel et de l'espace réglé.Bull. Soc. Math. Fr. 24 (1896), 140-177 French.
Reference: [4] Crofton, M. W.: On the theory of local probability, applied to Straight Lines drawn at random in a plane; the methods used being also extended to the proof of certain new Theorems in the Integral Calculus.Philos. Trans. R. Soc. Lond. 158 (1868), 181-199. 10.1098/rstl.1868.0008
Reference: [5] Cruz-Orive, L. M.: A new stereological principle for test lines in three-dimensional space.J. Microsc. 219 (2005), 18-28. MR 2149754, 10.1111/j.1365-2818.2005.01489.x
Reference: [6] Dvořák, J., Jensen, E. B.: On semiautomatic estimation of surface area.J. Microsc. 250 (2013), 142-57. 10.1111/jmi.12030
Reference: [7] Gual-Arnau, X., Cruz-Orive, L. M.: A new expression for the density of totally geodesic submanifolds in space forms, with stereological applications.Differ. Geom. Appl. 27 (2009), 124-128. Zbl 1168.53039, MR 2488995, 10.1016/j.difgeo.2008.06.013
Reference: [8] Gual-Arnau, X., Cruz-Orive, L. M., Nu{ñ}o-Ballesteros, J. J.: A new rotational integral formula for intrinsic volumes in space forms.Adv. Appl. Math. 44 (2010), 298-308. Zbl 1188.53089, MR 2593313, 10.1016/j.aam.2009.09.003
Reference: [9] Gutkin, E.: Curvatures, volumes and norms of derivatives for curves in Riemannian manifolds.J. Geom. Phys. 61 (2011), 2147-2161. Zbl 1231.53005, MR 2827115, 10.1016/j.geomphys.2011.06.013
Reference: [10] Hirsch, M. W.: Differential Topology. Corrected reprint of the 1976 original.Graduate Texts in Mathematics 33 Springer, New York (1994). MR 1336822
Reference: [11] Petkantschin, B.: Integralgeometrie 6. Zusammenhänge zwischen den Dichten der linearen Unterräume im $n$-dimensionalen Raum.Abh. Math. Semin. Hamb. Univ. 11 (1936), 249-310 German. 10.1007/BF02940729
Reference: [12] Ren, D.-l.: Topics in Integral Geometry.Series in Pure Mathematics 19 World Scientific, Singapore (1994). Zbl 0842.53001, MR 1336595
Reference: [13] Santal{ó}, L. A.: Integral Geometry and Geometric Probability.Cambridge Mathematical Library Cambridge University Press, Cambridge (2004). Zbl 1116.53050, MR 2162874
Reference: [14] Schneider, R., Weil, W.: Stochastic and Integral Geometry.Probability and Its Applications Springer, Berlin (2008). Zbl 1175.60003, MR 2455326
Reference: [15] Thórisdóttir, Ó., Kiderlen, M.: The invariator principle in convex geometry.Adv. Appl. Math. 58 (2014), 63-87. Zbl 1358.52009, MR 3213744, 10.1016/j.aam.2014.02.003
Reference: [16] Thórisdóttir, Ó., Rafati, A. H., Kiderlen, M.: Estimating the surface area of nonconvex particles from central planar sections.J. Micrsoc. 255 (2014), 49-64. 10.1111/jmi.12136
.

Files

Files Size Format View
AplMat_61-2016-4_8.pdf 291.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo