Previous |  Up |  Next

Article

Title: On the Bayesian estimation for the stationary Neyman-Scott point processes (English)
Author: Kopecký, Jiří
Author: Mrkvička, Tomáš
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 61
Issue: 4
Year: 2016
Pages: 503-514
Summary lang: English
.
Category: math
.
Summary: The pure and modified Bayesian methods are applied to the estimation of parameters of the Neyman-Scott point process. Their performance is compared to the fast, simulation-free methods via extensive simulation study. Our modified Bayesian method is found to be on average 2.8 times more accurate than the fast methods in the relative mean square errors of the point estimates, where the average is taken over all studied cases. The pure Bayesian method is found to be approximately as good as the fast methods. These methods are computationally affordable today. (English)
Keyword: Bayesian method
Keyword: Monte Carlo Markov chain
Keyword: Neyman-Scott point process
Keyword: parameter estimation
Keyword: shot-noise Cox process
Keyword: Thomas process
MSC: 62H12
MSC: 62M05
idZBL: Zbl 06644009
idMR: MR3532256
DOI: 10.1007/s10492-016-0144-8
.
Date available: 2016-08-01T09:31:11Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/145798
.
Reference: [1] Baddeley, A., Turner, R.: An R Package for analyzing spatial point patterns.J. Stat. Software 12 (2005), 1-42. 10.18637/jss.v012.i06
Reference: [2] Diggle, P. J., Gratton, R. J.: Monte Carlo methods of inference for implicit statistical models.J. R. Stat. Soc., Ser. B 46 (1984), 193-227. Zbl 0561.62035, MR 0781880
Reference: [3] Dvořák, J., Prokešová, M.: Moment estimation methods for stationary spatial Cox processes---a simulation study.Preprint (2011), http://www.karlin.mff.cuni.cz/{dvorak/CoxEstimation/CoxEstimation_SimulationStudy.pdf}. MR 3086866
Reference: [4] Dvořák, J., Prokešová, M.: Moment estimation methods for stationary spatial Cox processes---a comparison.Kybernetika 48 (2012), 1007-1026. Zbl 1297.62201, MR 3086866
Reference: [5] Guan, Y.: A composite likelihood approach in fitting spatial point process models.J. Am. Stat. Assoc. 101 (2006), 1502-1512. Zbl 1171.62348, MR 2279475, 10.1198/016214506000000500
Reference: [6] Guttorp, P., Thorarinsdottir, T. L.: Bayesian inference for non-Markovian point processes.J. M. Montero, M. Schlather Advances and Challenges in Space-Time Modelling of Natural Events Lecture Notes in Statistics 207 Springer, Berlin 79-102 (2012).
Reference: [7] Illian, J., Penttinen, A., Stoyan, H., Stoyan, D.: Statistical Analysis and Modelling of Spatial Point Patterns. Statistics in Practice.John Wiley & Sons, Chichester (2008). MR 2384630
Reference: [8] Møller, J., Waagepetersen, R. P.: Statistical Inference and Simulation for Spatial Point Processes.Monographs on Statistics and Applied Probability 100 Chapman and Hall/CRC, Boca Raton (2004). Zbl 1044.62101, MR 2004226
Reference: [9] Møller, J., Waagepetersen, R. P.: Modern statistics for spatial point processes.Scand. J. Stat. 34 (2007), 643-684. Zbl 1157.62067, MR 2392447
Reference: [10] Mrkvička, T.: Distinguishing different types of inhomogeneity in Neyman-Scott point processes.Methodol. Comput. Appl. Probab. 16 (2014), 385-395. Zbl 1305.62337, MR 3199053, 10.1007/s11009-013-9365-4
Reference: [11] Mrkvička, T., Muška, M., Kubečka, J.: Two step estimation for Neyman-Scott point process with inhomogeneous cluster centers.Stat. Comput. 24 (2014), 91-100. Zbl 1325.62077, MR 3147700, 10.1007/s11222-012-9355-3
Reference: [12] Neyman, J., Scott, E. L.: A theory for the spatial distribution of galaxies.Astrophys. J. 116 (1952), 144-163. MR 0053640, 10.1086/145599
Reference: [13] Stoyan, D., Kendall, W. S., Mecke, J.: Stochastic Geometry and Its Applications.Wiley Series in Probability and Mathematical Statistics John Wiley & Sons, Chichester (1995). Zbl 0838.60002, MR 0895588
Reference: [14] Tanaka, U., Ogata, Y., Stoyan, D.: Parameter estimation and model selection for Neyman-Scott point processes.Biom. J. 50 (2008), 43-57. MR 2414637, 10.1002/bimj.200610339
Reference: [15] Research, Wolfram, Inc.: Mathematica, Version 8.0.Champaign, IL (2010). MR 1951106
.

Files

Files Size Format View
AplMat_61-2016-4_9.pdf 617.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo