Title:
|
Lifts of Foliated Linear Connectionsto the Second Order Transverse Bundles (English) |
Author:
|
Shurygin, Vadim V. |
Author:
|
Zubkova, Svetlana K. |
Language:
|
English |
Journal:
|
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica |
ISSN:
|
0231-9721 |
Volume:
|
55 |
Issue:
|
1 |
Year:
|
2016 |
Pages:
|
111-120 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The second order transverse bundle $T^2_{}M$ of a foliated manifold $M$ carries a natural structure of a smooth manifold over the algebra $\mathbb {D}^2$ of truncated polynomials of degree two in one variable. Prolongations of foliated mappings to second order transverse bundles are a partial case of more general $\mathbb {D}^2$-smooth foliated mappings between second order transverse bundles. We establish necessary and sufficient conditions under which a $\mathbb {D}^2$-smooth foliated diffeomorphism between two second order transverse bundles maps the lift of a foliated linear connection into the lift of a foliated linear connection. (English) |
Keyword:
|
Foliation |
Keyword:
|
transverse bundle |
Keyword:
|
second order transverse bundle |
Keyword:
|
projectable linear connection |
Keyword:
|
Lie derivative |
Keyword:
|
Weil bundle |
MSC:
|
53C12 |
MSC:
|
53C15 |
MSC:
|
58A20 |
MSC:
|
58A32 |
idZBL:
|
Zbl 1365.58003 |
idMR:
|
MR3674605 |
. |
Date available:
|
2016-08-30T12:02:23Z |
Last updated:
|
2018-01-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/145822 |
. |
Reference:
|
[1] Evtushik, L. E., Lumiste, Yu. G., Ostianu, N. M., Shirokov, A. P.: Differential-geometric structures on manifolds.. In: Problemy Geometrii. Itogi Nauki i Tekhniki 9, VINITI Akad. Nauk SSSR, Moscow, 1979, 5–246. Zbl 0455.58002, MR 0573267 |
Reference:
|
[2] Gainullin, F. R., Shurygin, V. V.: Holomorphic tensor fields and linear connections on a second order tangent bundle.. Uchen. Zapiski Kazan. Univ. Ser. Fiz.-matem. Nauki 151, 1 (2009), 36–50. Zbl 1216.53019 |
Reference:
|
[3] Kolář, I., Michor, P. W., Slovák, J.: Natural Operations in Differential Geometry.. Springer, Berlin, 1993. MR 1202431 |
Reference:
|
[4] Molino, P.: Riemannian Foliations.. Birkhäuser, Boston, 1988. Zbl 0824.53028, MR 0932463 |
Reference:
|
[5] Morimoto, A.: Prolongation of connections to tangent bundles of higher order.. Nagoya Math. J. 40 (1970), 99–120. MR 0279719, 10.1017/S002776300001388X |
Reference:
|
[6] Morimoto, A.: Prolongation of connections to bundles of infinitely near points.. J. Different. Geom. 11, 4 (1976), 479–498. Zbl 0358.53013, MR 0445422, 10.4310/jdg/1214433720 |
Reference:
|
[7] Pogoda, Z.: Horizontal lifts and foliations.. Rend. Circ. Mat. Palermo 38, 2, suppl. no. 21 (1989), 279–289. Zbl 0678.57013, MR 1009580 |
Reference:
|
[8] Shurygin, V. V.: Structure of smooth mappings over Weil algebras and the category of manifolds over algebras.. Lobachevskii J. Math. 5 (1999), 29–55. Zbl 0985.58001, MR 1752307 |
Reference:
|
[9] Shurygin, V. V.: Smooth manifolds over local algebras and Weil Bundles.. J. Math. Sci. 108, 2 (2002), 249–294. Zbl 1007.58001, MR 1887820, 10.1023/A:1012848404391 |
Reference:
|
[10] Shurygin, V. V.: Lie jets and symmetries of geometric objects.. J. Math. Sci. 177, 5 (2011), 758–771. MR 2786527, 10.1007/s10958-011-0507-3 |
Reference:
|
[11] Vishnevskii, V. V.: Integrable affinor structures and their plural interpretations.. J. Math. Sci. 108, 2 (2002), 151–187. MR 1887816, 10.1023/A:1012818202573 |
Reference:
|
[12] Wolak, R.: Normal bundles of foliations of order $r$.. Demonstratio Math. 18, 4 (1985), 977–994. Zbl 0609.58004, MR 0857354 |
. |