Previous |  Up |  Next

Article

Keywords:
interpolation
Summary:
Let $(A_0, A_1)$ be a regular interpolation couple. Under several different assumptions on a fixed $A^{\beta}$, we show that $A^{\theta} = A_{\theta}$ for every $\theta \in (0, 1)$. We also deal with assumptions on $\overline{A}^{\beta}$, the closure of $A^{\beta}$ in the dual of $(A_0^*, A_1^*)_\beta$.
References:
[A] Arveson W.: An Invitation to $C^*$-algebra. Graduate Texts in Math., 39, Springer, New York-Heidelberg, 1976. MR 0512360
[BL] Bergh J., Lofström J.: Interpolation Spaces. An Introduction. Springer, Berlin-Heidelberg-New York, 1976. MR 0482275 | Zbl 0344.46071
[B] Bergh J.: On the relation between the two complex methods of interpolation. Indiana Univ. Math. J. 28 (1979), 775–777. DOI 10.1512/iumj.1979.28.28054 | MR 0542336 | Zbl 0394.41004
[Da1] Daher M.: Une remarque sur l'espace $A^\theta$. C.R.Acad. Sci. Paris Ser. I Math. 322 (1996), no. 7, 641–644. MR 1386467
[Da2] Daher M.: Une remarque sur les espaces d'interpolation $A^\theta$ qui sont LUR. Colloq. Math. 123 (2011), no. 2, 197–204. DOI 10.4064/cm123-2-3 | MR 2811171
[Da3] Daher M.: Une remarque sur les espaces d'interpolation faiblement localement uniformément convexes. arXiv:1206.4848.
[DU] Diestel J., Uhl J.J.: Vector Measures. Mathematical Surveys, 15, American Mathematical Society, Providence, Rhode Island, 1977. MR 0453964 | Zbl 0521.46035
[E] Edgar G.A.: Measurability in a Banach space. Indiana Univ. Math. J. 26 (1977), no. 4, 663–677. DOI 10.1512/iumj.1977.26.26053 | MR 0487448 | Zbl 0418.46034
[FHHMZ] Fabian M., Habala P., Hajek P., Montesinos V., Zizler V.: Banach Space Theory. CMS Books in Mathematics, Springer, New York, 2011. MR 2766381 | Zbl 1321.00042
[R] Rosenthal H.P.: Pointwise compact subsets of the first Baire class. Amer. J. Math. 99 (1977), no. 2, 362–378. DOI 10.2307/2373824 | MR 0438113
Partner of
EuDML logo