Previous |  Up |  Next

Article

Title: Nonnormality of remainders of some topological groups (English)
Author: Arhangel'skii, A. V.
Author: Mill, J. van
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 57
Issue: 3
Year: 2016
Pages: 345-352
Summary lang: English
.
Category: math
.
Summary: It is known that every remainder of a topological group is Lindelöf or pseudocompact. Motivated by this result, we study in this paper when a topological group $G$ has a normal remainder. In a previous paper we showed that under mild conditions on $G$, the Continuum Hypothesis implies that if the Čech-Stone remainder $G^*$ of $G$ is normal, then it is Lindelöf. Here we continue this line of investigation, mainly for the case of precompact groups. We show that no pseudocompact group, whose weight is uncountable but less than $\mathfrak c$, has a normal remainder under $\mathsf{MA}{+}\neg\mathsf{CH}$. We also show that if a precompact group with a countable network has a normal remainder, then this group is metrizable. We finally show that if $C_p(X)$ has a normal remainder, then $X$ is countable (Corollary 4.10) This result provides us with many natural examples of topological groups all remainders of which are nonnormal. (English)
Keyword: remainder
Keyword: compactification
Keyword: topological group
Keyword: normal space
MSC: 54A25
MSC: 54D35
MSC: 54D40
idZBL: Zbl 06674885
idMR: MR3554515
DOI: 10.14712/1213-7243.2015.166
.
Date available: 2016-09-22T15:26:05Z
Last updated: 2018-10-01
Stable URL: http://hdl.handle.net/10338.dmlcz/145839
.
Reference: [1] Arhangel'skii A.V.: Topological Function Spaces.Math. Appl., vol. 78, Kluwer Academic Publishers, Dordrecht, 1992. MR 1144519
Reference: [2] Arhangel'skii A.V.: Remainders in compactifications and generalized metrizability properties.Topology Appl. 150 (2005), 79–90. Zbl 1075.54012, MR 2133669, 10.1016/j.topol.2004.10.015
Reference: [3] Arhangel'skii A.V.: Two types of remainders of topological groups.Comment. Math. Univ. Carolin. 47 (2008), 119–126. MR 2433629
Reference: [4] Arhangel'skii A.V., van Mill J.: Nonnormality of Čech-Stone-remainders of topological groups.2015, to appear in Topology Appl.
Reference: [5] Arhangel'skii A.V., Tkachenko M. G.: Topological Groups and Related Structures.Atlantis Studies in Mathematics, vol. 1, Atlantis Press, Paris, World Scientific, 2008. MR 2433295
Reference: [6] Efimov B.A.: On dyadic spaces.Soviet Math. Dokl. 4 (1963), 1131–1134. Zbl 0137.16104, MR 0190894
Reference: [7] Engelking R.: Cartesian products and dyadic spaces.Fund. Math. 57 (1965), 287–304. Zbl 0173.50603, MR 0196692, 10.4064/fm-57-3-287-304
Reference: [8] Fleissner W.G.: Normal Moore spaces in the constructible universe.Proc. Amer. Math. Soc. 46 (1974), 294–298. Zbl 0384.54016, MR 0362240, 10.1090/S0002-9939-1974-0362240-4
Reference: [9] Juhász I.: Cardinal Functions in Topology – Ten Years Later.Mathematical Centre Tract, vol. 123, Mathematical Centre, Amsterdam, 1980. Zbl 0479.54001
Reference: [10] Kombarov A.P., Malyhin V. I.: $\Sigma $-products.Dokl. Akad. Nauk SSSR 213 (1973), 774–776. Zbl 0296.54008, MR 0339073
Reference: [11] Nyikos P.J., Reichel H.-C.: Topologically orderable groups.General Topology Appl. 5 (1975), 195–204. Zbl 0302.22003, MR 0372105, 10.1016/0016-660X(75)90020-3
Reference: [12] Raĭkov D.A.: On the completion of topological groups.Izv. Akad. Nauk SSSR 10 (1946), 513–528, (in Russian). Zbl 0061.04206, MR 0020083
Reference: [13] Rudin M.E.: Lectures on set theoretic topology.Published for the Conference Board of the Mathematical Sciences by the American Mathematical Society, Providence, R.I., 1975, Regional Conference Series in Mathematics, No. 23. Zbl 0472.54001, MR 0367886
Reference: [14] Tkachuk V.V.: A $C_p$-theory problem book.Springer, Cham, Berlin, 2014, xiv+583. Zbl 1325.54001, MR 3243753
Reference: [15] Weil A.: Sur les Espaces à Structure Uniforme et sur la Topologie Générale.Hermann, Paris, 1937. Zbl 0019.18604
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_57-2016-3_8.pdf 262.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo