Title:
|
$\mathcal {D}_{n,r}$ is not potentially nilpotent for $n \geq 4r-2$ (English) |
Author:
|
Shao, Yanling |
Author:
|
Gao, Yubin |
Author:
|
Gao, Wei |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
66 |
Issue:
|
3 |
Year:
|
2016 |
Pages:
|
671-679 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
An $n\times n$ sign pattern $\mathcal {A}$ is said to be potentially nilpotent if there exists a nilpotent real matrix $B$ with the same sign pattern as $\mathcal {A}$. Let $\mathcal {D}_{n,r}$ be an $n\times n$ sign pattern with $2\leq r \leq n$ such that the superdiagonal and the $(n,n)$ entries are positive, the $(i,1)$ $(i=1, \dots , r)$ and $(i,i-r+1)$ $(i=r+1, \dots , n)$ entries are negative, and zeros elsewhere. We prove that for $r\geq 3$ and $n \geq 4r-2$, the sign pattern $\mathcal {D}_{n,r}$ is not potentially nilpotent, and so not spectrally arbitrary. (English) |
Keyword:
|
sign pattern |
Keyword:
|
potentially nilpotent pattern |
Keyword:
|
spectrally arbitrary pattern |
MSC:
|
05C50 |
MSC:
|
15A18 |
idZBL:
|
Zbl 06644026 |
idMR:
|
MR3556860 |
DOI:
|
10.1007/s10587-016-0285-7 |
. |
Date available:
|
2016-10-01T15:15:45Z |
Last updated:
|
2023-10-28 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/145864 |
. |
Reference:
|
[1] Brualdi, R. A., Ryser, H. J.: Combinatorial Matrix Theory.Encyclopedia of Mathematics and Its Applications 39 Cambridge University Press, Cambridge (1991). Zbl 0746.05002, MR 1130611 |
Reference:
|
[2] Catral, M., Olesky, D. D., Driessche, P. van den: Allow problems concerning spectral properties of sign pattern matrices: a survey.Linear Algebra Appl. 430 (2009), 3080-3094. MR 2517861 |
Reference:
|
[3] Cavers, M. S., Meulen, K. N. Vander: Spectrally and inertially arbitrary sign patterns.Linear Algebra Appl. 394 (2005), 53-72. MR 2100576 |
Reference:
|
[4] Gao, Y., Li, Z., Shao, Y.: A note on spectrally arbitrary sign patterns.JP J. Algebra Number Theory Appl. 11 (2008), 15-35. Zbl 1163.15008, MR 2458665 |
Reference:
|
[5] Garnett, C., Shader, B. L.: A proof of the $T_n$ conjecture: Centralizers, Jacobians and spectrally arbitrary sign patterns.Linear Algebra Appl. 436 (2012), 4451-4458. Zbl 1244.15020, MR 2917422 |
Reference:
|
[6] Horn, R. A., Johnson, C. R.: Matrix Analysis.Cambridge University Press, Cambridge (1985). Zbl 0576.15001, MR 0832183 |
. |