Previous |  Up |  Next

Article

Title: Rational realization of the minimum ranks of nonnegative sign pattern matrices (English)
Author: Fang, Wei
Author: Gao, Wei
Author: Gao, Yubin
Author: Gong, Fei
Author: Jing, Guangming
Author: Li, Zhongshan
Author: Shao, Yanling
Author: Zhang, Lihua
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 66
Issue: 3
Year: 2016
Pages: 895-911
Summary lang: English
.
Category: math
.
Summary: A sign pattern matrix (or nonnegative sign pattern matrix) is a matrix whose entries are from the set $\{+, -, 0\}$ ($ \{ +, 0 \}$, respectively). The minimum rank (or rational minimum rank) of a sign pattern matrix $\cal A$ is the minimum of the ranks of the matrices (rational matrices, respectively) whose entries have signs equal to the corresponding entries of $\cal A$. Using a correspondence between sign patterns with minimum rank $r\geq 2$ and point-hyperplane configurations in $\mathbb R^{r-1}$ and Steinitz's theorem on the rational realizability of 3-polytopes, it is shown that for every nonnegative sign pattern of minimum rank at most 4, the minimum rank and the rational minimum rank are equal. But there are nonnegative sign patterns with minimum rank 5 whose rational minimum rank is greater than 5. It is established that every $d$-polytope determines a nonnegative sign pattern with minimum rank $d+1$ that has a $(d+1)\times (d+1)$ triangular submatrix with all diagonal entries positive. It is also shown that there are at most $\min \{ 3m, 3n \}$ zero entries in any condensed nonnegative $m \times n$ sign pattern of minimum rank 3. Some bounds on the entries of some integer matrices achieving the minimum ranks of nonnegative sign patterns with minimum rank 3 or 4 are established. (English)
Keyword: sign pattern (matrix)
Keyword: nonnegative sign pattern
Keyword: minimum rank
Keyword: convex polytope
Keyword: rational minimum rank
Keyword: rational realization
Keyword: integer matrix
Keyword: condensed sign pattern
Keyword: point-hyperplane configuration
MSC: 15A23
MSC: 15B35
MSC: 15B36
MSC: 52C35
idZBL: Zbl 06644040
idMR: MR3556874
DOI: 10.1007/s10587-016-0299-1
.
Date available: 2016-10-01T15:33:56Z
Last updated: 2023-10-28
Stable URL: http://hdl.handle.net/10338.dmlcz/145878
.
Reference: [1] Alon, N., Frankl, P., Rödl, V.: Geometric realization of set systems and probabilistic communication complexity.Proc. 26th Annual Symp. on Foundations of Computer Science IEEE Computer Society, Portland (1985),272-280.
Reference: [2] Arav, M., Hall, F., Koyuncu, S., Li, Z., Rao, B.: Rational realizations of the minimum rank of a sign pattern matrix.Linear Algebra Appl. 409 (2005), 111-125. MR 2170271
Reference: [3] Arav, M., Hall, F., Li, Z., Merid, A., Gao, Y.: Sign patterns that require almost unique rank.Linear Algebra Appl. 430 (2009), 7-16. Zbl 1157.15020, MR 2460493
Reference: [4] Arav, M., Hall, F., Li, Z., Rao, B.: Rational solutions of certain matrix equations.Linear Algebra Appl. 430 (2009), 660-663. Zbl 1166.15005, MR 2469319
Reference: [5] Arav, M., Hall, F., Li, Z., Holst, H. van der, Sinkovic, J. H., Zhang, L.: Minimum ranks of sign patterns via sign vectors and duality.Electron. J. Linear Algebra 30 (2015), 360-371. MR 3386529, 10.13001/1081-3810.3077
Reference: [6] Berman, A., Friedland, S., Hogben, L., Rothblum, U. G., Shader, B.: Minimum rank of matrices described by a graph or pattern over the rational, real and complex numbers.Electron. J. Comb. 15 (2008), 1-19. Zbl 1179.05070, MR 2383445
Reference: [7] Brualdi, R., Fallat, S., Hogben, L., Shader, B., Driessche, P. van den: Final Report: Workshop on Theory and Applications of Matrices described by Patterns.Banff International Research Station (2010),20 pages.
Reference: [8] Brualdi, R. A., Shader, B. L.: Matrices of Sign-Solvable Linear Systems.Cambridge Tracts in Mathematics 116 Cambridge University Press, Cambridge (1995). Zbl 0833.15002, MR 1358133
Reference: [9] Chen, G., Hall, F. J., Li, Z., Wei, B.: On ranks of matrices associated with trees.Graphs Comb. 19 (2003), 323-334. Zbl 1023.05093, MR 2007894, 10.1007/s00373-002-0522-8
Reference: [10] Delsarte, P., Kamp, Y.: Low rank matrices with a given sign pattern.SIAM J. Discrete Math. 2 (1989), 51-63. Zbl 0677.15007, MR 0976788, 10.1137/0402006
Reference: [11] Fang, W., Gao, W., Gao, Y., Gong, F., Jing, G., Li, Z., Shao, Y., Zhang, L.: Minimum ranks of sign patterns and zero-nonzero patterns and point-hyperplane configurations.Submitted to Linear Algebra Appl.
Reference: [12] Fiedler, M., Gao, W., Hall, F. J., Jing, G., Li, Z., Stroev, M.: Ranks of dense alternating sign matrices and their sign patterns.Linear Algebra Appl. 471 (2015), 109-121. Zbl 1310.15057, MR 3314328
Reference: [13] Forster, J.: A linear lower bound on the unbounded error probabilistic communication complexity.J. Comput. Syst. Sci. 65 (2002), 612-625. Zbl 1058.68058, MR 1964645, 10.1016/S0022-0000(02)00019-3
Reference: [14] Forster, J., Schmitt, N., Simon, H. U., Suttorp, T.: Estimating the optimal margins of embeddings in Euclidean half spaces.Mach. Learn. 51 (2003), 263-281. Zbl 1026.68112, MR 2042049, 10.1023/A:1022905618164
Reference: [15] Friesen, M., Hamed, A., Lee, T., Theis, D. O.: Fooling-sets and rank.Eur. J. Comb. (2015), 143-153. Zbl 1314.05028, MR 3339019
Reference: [16] Graham, R. L., Grötschel, M., Lovász, L., eds.: Handbook of Combinatorics.MIT Press, Cambridge (1995).
Reference: [17] Hall, F. J., Li, Z.: Sign Pattern Matrices.Handbook of Linear Algebra L. Hogben Discrete Mathematics and Its Applications Chapman & Hall/CRC, Boca Raton (2014).
Reference: [18] Hershkowitz, D., Schneider, H.: Ranks of zero patterns and sign patterns.Linear Multilinear Algebra 34 (1993), 3-19. Zbl 0793.05027, MR 1334927, 10.1080/03081089308818204
Reference: [19] Johnson, C. R.: Some outstanding problems in the theory of matrices.Linear Multilinear Algebra 12 (1982), 99-108. Zbl 0494.15002, MR 0670716, 10.1080/03081088208817476
Reference: [20] Johnson, C. R., Zhang, Y.: On the possible ranks among matrices with a given pattern.Discrete Math. Algorithms Appl. 2 (2010), 363-377. Zbl 1210.15002, MR 2728832, 10.1142/S1793830910000711
Reference: [21] Kopparty, S., Rao, K. P. S. B.: The minimum rank problem: a counterexample.Linear Algebra Appl. 428 (2008), 1761-1765. Zbl 1151.15002, MR 2388655
Reference: [22] Li, Z., Gao, Y., Arav, M., Gong, F., Gao, W., Hall, F. J., Holst, H. van der: Sign patterns with minimum rank 2 and upper bounds on minimum ranks.Linear Multilinear Algebra 61 (2013), 895-908. MR 3175334, 10.1080/03081087.2012.716431
Reference: [23] Matoušek, J.: Lectures on Discrete Geometry.Graduate Texts in Mathematics 212 Springer, New York (2002). Zbl 0999.52006, MR 1899299
Reference: [24] Paturi, R., Simon, J.: Probabilistic communication complexity.J. Comput. Syst. Sci. 33 (1986), 106-123. Zbl 0625.68029, MR 0864082, 10.1016/0022-0000(86)90046-2
Reference: [25] Razborov, A. A., Sherstov, A. A.: The sign rank of AC$^0$.SIAM J. Comput. 39 (2010), 1833-1855. Zbl 1211.68213, MR 2592035, 10.1137/080744037
Reference: [26] Mor, A. Ribó, Rote, G., Schulz, A.: Small grid embeddings of 3-polytopes.Discrete Comput. Geom. 45 (2011), 65-87. MR 2765520, 10.1007/s00454-010-9301-0
Reference: [27] Shitov, Y.: Sign patterns of rational matrices with large rank.Eur. J. Comb. 42 (2014), 107-111. Zbl 1314.15022, MR 3240139, 10.1016/j.ejc.2014.06.001
Reference: [28] Ziegler, G. M.: Lectures on Polytopes.Graduate Texts in Mathematics 152 Springer, Berlin (1995). Zbl 0823.52002, MR 1311028
.

Files

Files Size Format View
CzechMathJ_66-2016-3_24.pdf 256.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo