Previous |  Up |  Next

Article

Title: Factorization of CP-rank-$3$ completely positive matrices (English)
Author: Brandts, Jan
Author: Křížek, Michal
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 66
Issue: 3
Year: 2016
Pages: 955-970
Summary lang: English
.
Category: math
.
Summary: A symmetric positive semi-definite matrix $A$ is called completely positive if there exists a matrix $B$ with nonnegative entries such that $A=BB^\top $. If $B$ is such a matrix with a minimal number $p$ of columns, then $p$ is called the cp-rank of $A$. In this paper we develop a finite and exact algorithm to factorize any matrix $A$ of cp-rank $3$. Failure of this algorithm implies that $A$ does not have cp-rank $3$. Our motivation stems from the question if there exist three nonnegative polynomials of degree at most four that vanish at the boundary of an interval and are orthonormal with respect to a certain inner product. (English)
Keyword: completely positive matrix
Keyword: cp-rank
Keyword: factorization
Keyword: discrete maximum principle
MSC: 15B48
MSC: 65N30
idZBL: Zbl 06644044
idMR: MR3556878
DOI: 10.1007/s10587-016-0303-9
.
Date available: 2016-10-01T15:40:40Z
Last updated: 2023-10-28
Stable URL: http://hdl.handle.net/10338.dmlcz/145882
.
Reference: [1] Barioli, F., Berman, A.: The maximal cp-rank of rank $k$ completely positive matrices.Linear Algebra Appl. 363 (2003), 17-33. Zbl 1042.15012, MR 1969056
Reference: [2] Berman, A., Shaked-Monderer, N.: Completely Positive Matrices.World Scientific, River Edge (2003). Zbl 1030.15022, MR 1986666
Reference: [3] Croft, H. T., Falconer, K. J., Guy, R. K.: Unsolved Problems in Geometry.Problem Books in Mathematics 2 Springer, New York (1991). Zbl 0748.52001, MR 1107516, 10.1007/978-1-4612-0963-8_8
Reference: [4] Berg, M. de, Kreveld, M. van, Overmars, M., Schwarzkopf, O.: Computational Geometry. Algorithms and Applications.Springer, Berlin (2000). MR 1763734, 10.1007/978-3-662-04245-8_1
Reference: [5] Post, K. A.: Triangle in a triangle: on a problem of Steinhaus.Geom. Dedicata (1993), 45 115-120. Zbl 0770.51021, MR 1199733, 10.1007/BF01667408
Reference: [6] Shaked-Monderer, N.: A note on upper bounds on the cp-rank.Linear Algebra Appl. 431 2407-2413 (2009). Zbl 1180.15028, MR 2563031
Reference: [7] Steinhaus, H.: One Hundred Problems in Elementary Mathematics.Popular Lectures in Mathematics 7 Pergamon Press, Oxford (1963). Zbl 0116.24102, MR 0157881
Reference: [8] Sullivan, J. M.: Polygon in a triangle: Generalizing theorem by Post.Preprint available at http://torus.math.uiuc.edu/jms/Papers/post.pdf (1996).
Reference: [9] Vejchodský, T., Šolín, P.: Discrete maximum principle for higher-order finite elements in 1D.Math. Comput. 76 1833-1846 (2007). Zbl 1125.65108, MR 2336270, 10.1090/S0025-5718-07-02022-4
.

Files

Files Size Format View
CzechMathJ_66-2016-3_28.pdf 887.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo