Title:
|
Gaussian density estimates for the solution of singular stochastic Riccati equations (English) |
Author:
|
Nguyen, Tien Dung |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
61 |
Issue:
|
5 |
Year:
|
2016 |
Pages:
|
515-526 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Stochastic Riccati equation is a backward stochastic differential equation with singular generator which arises naturally in the study of stochastic linear-quadratic optimal control problems. In this paper, we obtain Gaussian density estimates for the solutions to this equation. (English) |
Keyword:
|
stochastic Riccati equation |
Keyword:
|
Malliavin calculus |
Keyword:
|
density estimate |
MSC:
|
60H07 |
MSC:
|
60H10 |
idZBL:
|
Zbl 06644010 |
idMR:
|
MR3547760 |
DOI:
|
10.1007/s10492-016-0145-7 |
. |
Date available:
|
2016-10-01T15:49:15Z |
Last updated:
|
2020-07-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/145888 |
. |
Reference:
|
[1] Aboura, O., Bourguin, S.: Density estimates for solutions to one dimensional backward SDE's.Potential Anal. 38 (2013), 573-587. Zbl 1273.60066, MR 3015365, 10.1007/s11118-012-9287-8 |
Reference:
|
[2] Antonelli, F., Kohatsu-Higa, A.: Densities of one-dimensional backward SDEs.Potential Anal. 22 (2005), 263-287. Zbl 1082.60047, MR 2134722, 10.1007/s11118-004-1324-9 |
Reference:
|
[3] Cvitani{ć}, J., Zhang, J.: Contract Theory in Continuous-Time Models.Springer Finance Springer, Heidelberg (2013). Zbl 1319.91007, MR 2963805 |
Reference:
|
[4] Reis, G. Dos: On Some Properties of Solutions of Quadratic Growth BSDE and Applications in Finance and Insurance.PhD thesis, Humboldt University in Berlin (2010). |
Reference:
|
[5] Kazamaki, N.: Continuous Exponential Martingales and BMO.Lecture Notes in Mathematics 1579 Springer, Berlin (1994). Zbl 0806.60033, MR 1299529 |
Reference:
|
[6] Lim, A. E. B., Zhou, X. Y.: Mean-variance portfolio selection with random parameters in a complete market.Math. Oper. Res. 27 (2002), 101-120. Zbl 1082.91521, MR 1886222, 10.1287/moor.27.1.101.337 |
Reference:
|
[7] Mastrolia, T., Possamaï, D., Réveillac, A.: Density analysis of BSDEs.Ann. Probab. 44 (2016), 2817-2857. MR 3531681, 10.1214/15-AOP1035 |
Reference:
|
[8] Nguyen, T. D., Privault, N., Torrisi, G. L.: Gaussian estimates for the solutions of some one-dimensional stochastic equations.Potential Anal. 43 (2015), 289-311. Zbl 1321.60127, MR 3374113, 10.1007/s11118-015-9472-7 |
Reference:
|
[9] Nourdin, I., Viens, F. G.: Density formula and concentration inequalities with Malliavin calculus.Electron. J. Probab. 14 (2009), 2287-2309. Zbl 1192.60066, MR 2556018, 10.1214/EJP.v14-707 |
Reference:
|
[10] Nualart, D.: The Malliavin Calculus and Related Topics.Probability and Its Applications Springer, Berlin (2006). Zbl 1099.60003, MR 2200233 |
Reference:
|
[11] Privault, N.: Stochastic Analysis in Discrete and Continuous Settings with Normal Martingales.Lecture Notes in Mathematics 1982 Springer, Berlin (2009). Zbl 1185.60005, MR 2531026 |
Reference:
|
[12] Shen, Y.: Mean-variance portfolio selection in a complete market with unbounded random coefficients.Automatica J. IFAC 55 (2015), 165-175. MR 3336665, 10.1016/j.automatica.2015.03.009 |
Reference:
|
[13] Yu, Z.: Continuous-time mean-variance portfolio selection with random horizon.Appl. Math. Optim. 68 (2013), 333-359. Zbl 1288.91181, MR 3131499, 10.1007/s00245-013-9209-1 |
. |