Previous |  Up |  Next

Article

Title: Guaranteed and computable bounds of the limit load for variational problems with linear growth energy functionals (English)
Author: Haslinger, Jaroslav
Author: Repin, Sergey
Author: Sysala, Stanislav
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 61
Issue: 5
Year: 2016
Pages: 527-564
Summary lang: English
.
Category: math
.
Summary: The paper is concerned with guaranteed and computable bounds of the limit (or safety) load, which is one of the most important quantitative characteristics of mathematical models associated with linear growth functionals. We suggest a new method for getting such bounds and illustrate its performance. First, the main ideas are demonstrated with the paradigm of a simple variational problem with a linear growth functional defined on a set of scalar valued functions. Then, the method is extended to classical plasticity models governed by von Mises and Drucker-Prager yield laws. The efficiency of the proposed approach is confirmed by several numerical experiments. (English)
Keyword: functionals with linear growth
Keyword: limit load
Keyword: truncation method
Keyword: perfect plasticity
MSC: 49M15
MSC: 74C05
MSC: 74S05
MSC: 90C25
idZBL: Zbl 06644011
idMR: MR3547761
DOI: 10.1007/s10492-016-0146-6
.
Date available: 2016-10-01T15:51:18Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/145890
.
Reference: [1] Caboussat, A., Glowinski, R.: Numerical solution of a variational problem arising in stress analysis: the vector case.Discrete Contin. Dyn. Syst. 27 (2010), 1447-1472. MR 2629532, 10.3934/dcds.2010.27.1447
Reference: [2] Cermak, M., Haslinger, J., Kozubek, T., Sysala, S.: Discretization and numerical realization of contact problems for elastic-perfectly plastic bodies: Part II---numerical realization, limit analysis.ZAMM, Z. Angew. Math. Mech. 95 (2015), 1348-1371. MR 3434744, 10.1002/zamm.201400069
Reference: [3] Chen, W. F., Liu, X. L.: Limit Analysis in Soil Mechanics.Elsevier (1990).
Reference: [4] Christiansen, E.: Limit analysis of collapse states.P. G. Ciarlet Handbook of Numerical Analysis, Volume IV: Finite Element Methods (part 2), Numerical Methods for Solids (part 2) North-Holland, Amsterdam 193-312 (1996). MR 1422505
Reference: [5] Neto, E. A. de Souza, Perić, D., Owen, D. R. J.: Computational Methods for Plasticity: Theory and Applications.Wiley (2008).
Reference: [6] Dierkes, U., Hildebrandt, S., Sauvigny, F.: Minimal Surfaces.Grundlehren der Mathematischen Wissenschaften 339 Springer, Dordrecht (2010). Zbl 1213.53002, MR 2566897
Reference: [7] Duvaut, G., Lions, J. L.: Inequalities in Mechanics and Physics.Grundlehren der Mathematischen Wissenschaften 219 Springer, Berlin (1976). Zbl 0331.35002, MR 0521262, 10.1007/978-3-642-66165-5
Reference: [8] Ekeland, I., Temam, R.: Convex Analysis and Variational Problems.Études Mathématiques Dunod; Gauthier-Villars, Paris French (1974). Zbl 0281.49001, MR 0463993
Reference: [9] Finn, R.: Equilibrium Capillary Surfaces.Grundlehren der Mathematischen Wissenschaften 284 Springer, New York (1986). Zbl 0583.35002, MR 0816345, 10.1007/978-1-4613-8584-4
Reference: [10] Fučík, S., Kufner, A.: Nonlinear Differential Equations.Studies in Applied Mechanics 2 Elsevier Scientific Publishing Company, Amsterdam (1980). MR 0558764
Reference: [11] Giusti, E.: Minimal Surfaces and Functions of Bounded Variations.Monographs in Mathematics 80 Birkhäuser, Basel (1984). MR 0775682
Reference: [12] Hansbo, P.: A discontinuous finite element method for elasto-plasticity.Int. J. Numer. Methods Biomed. Eng. 26 (2010), 780-789. Zbl 1351.74082, MR 2642251
Reference: [13] Haslinger, J., Repin, S., Sysala, S.: A reliable incremental method of computing the limit load in deformation plasticity based on compliance: Continuous and discrete setting.J. Comput. Appl. Math. 303 (2016), 156-170. MR 3479280, 10.1016/j.cam.2016.02.035
Reference: [14] Johnson, C., Scott, R.: A finite element method for problems in perfect plasticity using discontinuous trial functions.Nonlinear Finite Element Analysis in Structural Mechanics Proc. Europe-U.S. Workshop, Bochum, 1980 W. Wunderlich, et al. Springer, Berlin 307-324 (1981). Zbl 0572.73076, MR 0631535
Reference: [15] Krasnosel'skii, M. A.: Topological Methods in the Theory of Nonlinear Integral Equations.International Series of Monographs on Pure and Applied Mathematics 45 Pergamon Press, Oxford (1964). MR 0159197
Reference: [16] Langbein, D. W.: Capillary Surfaces: Shape, Stability, Dynamics, in Particular under Weightlessness.Springer Tracts in Modern Physics 178 Springer, Berlin (2002). Zbl 1050.76001, MR 1991488, 10.1007/3-540-45267-2
Reference: [17] Liu, F., Zhao, J.: Limit analysis of slope stability by rigid finite-element method and linear programming considering rotational failure.Int. J. Geomech. 13 (2013), 827-839. 10.1061/(ASCE)GM.1943-5622.0000283
Reference: [18] Nitsche, J. C. C.: Lectures on Minimal Surfaces: Volume 1: Introduction, Fundamentals, Geometry and Basic Boundary Value Problems. Revised, extended and updated by the author.Cambridge University Press, Cambridge (2011). MR 1015936
Reference: [19] Ramm, E.: Strategies for tracing nonlinear response near limit points.Nonlinear Finite Element Analysis in Structural Mechanics W. Wunderlich Proc. Europe-U.S.Workshop, Bochum, 1980 Springer, Berlin 63-89 (1981).
Reference: [20] Repin, S., Seregin, G.: Existence of a weak solution of the minimax problem arising in Coulomb-Mohr plasticity.Nonlinear Evolution Equations Am. Math. Soc. Ser. 2, 164 189-220 (1995), American Mathematical Society, Providence N. N. Uraltseva. Zbl 0890.73079, MR 1334144, 10.1090/trans2/164/09
Reference: [21] Rockafellar, R. T.: Convex Analysis.Princeton University Press, Princeton (1970). Zbl 0193.18401, MR 0274683
Reference: [22] Sloan, S. W.: Lower bound limit analysis using finite elements and linear programming.Int. J. Numer. Anal. Methods Geomech. 12 (1988), 61-77. Zbl 0626.73117, 10.1002/nag.1610120105
Reference: [23] Suquet, P.-M.: Existence et régularité des solutions des équations de la plasticité parfaite.C. R. Acad. Sci., Paris, Sér. A 286 (1978), French 1201-1204. MR 0501114
Reference: [24] Sysala, S.: Properties and simplifications of constitutive time-discretized elastoplastic operators.ZAMM, Z. Angew. Math. Mech. 94 (2014), 233-255. MR 3179702, 10.1002/zamm.201200056
Reference: [25] Sysala, S., Cermak, M., Koudelka, T., Kruis, J., Zeman, J., Blaheta, R.: Subdifferential-based implicit return-mapping operators in computational plasticity.ZAMM, Z. Angew. Math. Mech. 96 (2016), 1-21, DOI 10.1002/zamm.201500305. MR 3580287, 10.1002/zamm.201500305
Reference: [26] Sysala, S., Haslinger, J., Hlaváček, I., Cermak, M.: Discretization and numerical realization of contact problems for elastic-perfectly plastic bodies: PART I -- discretization, limit analysis.ZAMM, Z. Angew. Math. Mech. 95 (2015), 333-353. Zbl 1322.74055, MR 3340908, 10.1002/zamm.201300112
Reference: [27] Temam, R.: Mathematical Problems in Plasticity.Gauthier-Villars, Montrouge (1983). MR 0711964
Reference: [28] Yu, X., Tin-Loi, F.: A simple mixed finite element for static limit analysis.Comput. Struct. 84 (2006), 1906-1917. 10.1016/j.compstruc.2006.08.019
Reference: [29] Zienkiewicz, O. C., Taylor, R. L.: The Finite Element Method. Vol. 2. Solid Mechanics.Butterworth-Heinemann, Oxford (2000). MR 1897986
.

Files

Files Size Format View
AplMat_61-2016-5_2.pdf 474.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo