Title:
|
Complete Riemannian manifolds admitting a pair of Einstein-Weyl structures (English) |
Author:
|
Ghosh, Amalendu |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
141 |
Issue:
|
3 |
Year:
|
2016 |
Pages:
|
315-325 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We prove that a connected Riemannian manifold admitting a pair of non-trivial Einstein-Weyl structures $(g, \pm \omega )$ with constant scalar curvature is either Einstein, or the dual field of $\omega $ is Killing. Next, let $(M^n, g)$ be a complete and connected Riemannian manifold of dimension at least $3$ admitting a pair of Einstein-Weyl structures $(g, \pm \omega )$. Then the Einstein-Weyl vector field $E$ (dual to the $1$-form $\omega $) generates an infinitesimal harmonic transformation if and only if $E$ is Killing. (English) |
Keyword:
|
Weyl manifold |
Keyword:
|
Einstein-Weyl structure |
Keyword:
|
infinitesimal harmonic transformation |
MSC:
|
53C15 |
MSC:
|
53C20 |
MSC:
|
53C25 |
idZBL:
|
Zbl 06644016 |
idMR:
|
MR3557582 |
DOI:
|
10.21136/MB.2016.0072-14 |
. |
Date available:
|
2016-10-01T15:59:54Z |
Last updated:
|
2020-07-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/145896 |
. |
Reference:
|
[1] Besse, A. L.: Einstein Manifolds.Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 10 Springer, Berlin (1987), German. Zbl 0613.53001, MR 0867684 |
Reference:
|
[2] Blair, D. E.: Riemannian Geometry of Contact and Symplectic Manifolds.Progress in Mathematics 203 Birkhäuser, Boston (2010). Zbl 1246.53001, MR 2682326 |
Reference:
|
[3] Boyer, C. P., Galicki, K.: Sasakian Geometry.Oxford Mathematical Monographs Oxford University Press, Oxford (2008). Zbl 1155.53002, MR 2382957 |
Reference:
|
[4] Boyer, C. P., Galicki, K., Matzeu, P.: On $\eta$-Einstein Sasakian geometry.Comm. Math. Phys. 262 (2006), 177-208. Zbl 1103.53022, MR 2200887, 10.1007/s00220-005-1459-6 |
Reference:
|
[5] Gauduchon, P.: Weil-Einstein structures, twistor spaces and manifolds of type {$S^1\times S^3$}.J. Reine Angew. Math. 469 (1995), 1-50 French. MR 1363825 |
Reference:
|
[6] Gauduchon, P.: La 1-forme de torsion d'une variété hermitienne compacte.Math. Ann. 267 (1984), 495-518 French. Zbl 0523.53059, MR 0742896, 10.1007/BF01455968 |
Reference:
|
[7] Ghosh, A.: Certain infinitesimal transformations on contact metric manifolds.J. Geom. 106 (2015), 137-152. Zbl 1319.53091, MR 3320884, 10.1007/s00022-014-0240-4 |
Reference:
|
[8] Ghosh, A.: Einstein-Weyl structures on contact metric manifolds.Ann. Global Anal. Geom. 35 (2009), 431-441. Zbl 1180.53031, MR 2506245, 10.1007/s10455-008-9145-5 |
Reference:
|
[9] Higa, T.: Weyl manifolds and Einstein-Weyl manifolds.Comment. Math. Univ. St. Pauli 42 (1993), 143-160. Zbl 0811.53045, MR 1241295 |
Reference:
|
[10] Ishihara, S.: On infinitesimal concircular transformations.Kōdai Math. Semin. Rep. 12 (1960), 45-56. Zbl 0101.14203, MR 0121744, 10.2996/kmj/1138844260 |
Reference:
|
[11] Narita, F.: Einstein-Weyl structures on almost contact metric manifolds.Tsukuba J. Math. 22 (1998), 87-98. Zbl 0995.53035, MR 1637656, 10.21099/tkbjm/1496163471 |
Reference:
|
[12] Nouhaud, O.: Déformations infinitésimales harmoniques remarquables.C. R. Acad. Sci. Paris Sér. A 275 (1972), 1103-1105 French. Zbl 0243.53023, MR 0464090 |
Reference:
|
[13] Okumura, M.: Some remarks on space with a certain contact structure.Tohoku Math. J. (2) 14 (1962), 135-145. Zbl 0119.37701, MR 0143148, 10.2748/tmj/1178244168 |
Reference:
|
[14] Pedersen, H., Swann, A.: Einstein-Weyl geometry, the Bach tensor and conformal scalar curvature.J. Reine Angew. Math. 441 (1993), 99-113. Zbl 0776.53027, MR 1228613 |
Reference:
|
[15] Pedersen, H., Swann, A.: Riemannian submersions, four-manifolds and Einstein-Weyl geometry.Proc. Lond. Math. Soc. (3) 66 (1993), 381-399. Zbl 0742.53014, MR 1199072, 10.1112/plms/s3-66.2.381 |
Reference:
|
[16] Perrone, D.: Contact metric manifolds whose characteristic vector field is a harmonic vector field.Differ. Geom. Appl. 20 (2004), 367-378. Zbl 1061.53028, MR 2053920, 10.1016/j.difgeo.2003.12.007 |
Reference:
|
[17] Stepanov, S. E., Shandra, I. G.: Geometry of infinitesimal harmonic transformations.Ann. Global Anal. Geom. 24 (2003), 291-299. Zbl 1035.53090, MR 1996772, 10.1023/A:1024753028255 |
Reference:
|
[18] Stepanov, S. E., Tsyganok, I. I., Mikeš, J.: From infinitesimal harmonic transformations to Ricci solitons.Math. Bohem. 138 (2013), 25-36. Zbl 1274.53096, MR 3076218 |
Reference:
|
[19] Tanno, S.: The topology of contact Riemannian manifolds.Ill. J. Math. 12 (1968), 700-717. Zbl 0165.24703, MR 0234486, 10.1215/ijm/1256053971 |
Reference:
|
[20] Tod, K. P.: Compact 3-dimensional Einstein-Weyl structures.J. Lond. Math. Soc. (2) 45 (1992), 341-351. Zbl 0761.53026, MR 1171560, 10.1112/jlms/s2-45.2.341 |
Reference:
|
[21] Yano, K.: Integral Formulas in Riemannian Geometry.Pure and Applied Mathematics, No. 1 Marcel Dekker, New York (1970). Zbl 0213.23801, MR 0284950 |
. |