Previous |  Up |  Next

Article

Title: Application of $\rm (L)$ sets to some classes of operators (English)
Author: El Fahri, Kamal
Author: Machrafi, Nabil
Author: H'michane, Jawad
Author: Elbour, Aziz
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 141
Issue: 3
Year: 2016
Pages: 327-338
Summary lang: English
.
Category: math
.
Summary: The paper contains some applications of the notion of $Ł$ sets to several classes of operators on Banach lattices. In particular, we introduce and study the class of order $\rm (L)$-Dunford-Pettis operators, that is, operators from a Banach space into a Banach lattice whose adjoint maps order bounded subsets to an $\rm (L)$ sets. As a sequence characterization of such operators, we see that an operator $T\colon X\rightarrow E$ from a Banach space into a Banach lattice is order $Ł$-Dunford-Pettis, if and only if $|T(x_{n})|\rightarrow 0$ for $\sigma (E,E')$ for every weakly null sequence $(x_{n})\subset X$. We also investigate relationships between order $Ł$-Dunford-Pettis, $\rm AM$-compact, weak* Dunford-Pettis, and Dunford-Pettis operators. In particular, it is established that each operator $T\colon E\rightarrow F$ between Banach lattices is Dunford-Pettis whenever it is both order $\rm (L)$-Dunford-Pettis and weak* Dunford-Pettis, if and only if $E$ has the Schur property or the norm of $F$ is order continuous. (English)
Keyword: $\rm (L)$ set
Keyword: order $\rm (L)$-Dunford-Pettis operator
Keyword: weakly sequentially continuous lattice operations
Keyword: Banach lattice
MSC: 46B42
MSC: 46B50
MSC: 47B65
idZBL: Zbl 06644017
idMR: MR3557583
DOI: 10.21136/MB.2016.0076-14
.
Date available: 2016-10-01T16:00:43Z
Last updated: 2020-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/145897
.
Reference: [1] Aliprantis, C. D., Burkinshaw, O.: Positive Operators.Springer, Dordrecht (2006). Zbl 1098.47001, MR 2262133
Reference: [2] Aqzzouz, B., Bouras, K.: Weak and almost Dunford-Pettis operators on Banach lattices.Demonstr. Math. 46 (2013), 165-179. Zbl 1280.46010, MR 3075506
Reference: [3] Aqzzouz, B., Bouras, K.: Dunford-Pettis sets in Banach lattices.Acta Math. Univ. Comen., New Ser. 81 (2012), 185-196. Zbl 1274.46051, MR 2975284
Reference: [4] Dodds, P. G., Fremlin, D. H.: Compact operators in Banach lattices.Isr. J. Math. 34 (1979), 287-320. Zbl 0438.47042, MR 0570888, 10.1007/BF02760610
Reference: [5] Kaddouri, A. El, Moussa, M.: About the class of ordered limited operators.Acta Univ. Carol. Math. Phys. 54 (2013), 37-43. Zbl 1307.46008, MR 3222749
Reference: [6] Emmanuele, G.: A dual characterization of Banach spaces not containing $\ell ^{1}$.Bull. Pol. Acad. Sci. Math. 34 (1986), 155-160. MR 0861172
Reference: [7] Ghenciu, I., Lewis, P.: The Dunford-Pettis property, the Gelfand-Phillips property, and L-sets.Colloq. Math. 106 (2006), 311-324. Zbl 1118.46017, MR 2283818, 10.4064/cm106-2-11
Reference: [8] Meyer-Nieberg, P.: Banach Lattices.Universitext. Springer, Berlin (1991). Zbl 0743.46015, MR 1128093
.

Files

Files Size Format View
MathBohem_141-2016-3_3.pdf 263.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo