Previous |  Up |  Next

Article

Title: Characterizing matrices with ${\bf {X}}$-simple image eigenspace in max-min semiring (English)
Author: Plavka, Ján
Author: Sergeev, Sergeĭ
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 52
Issue: 4
Year: 2016
Pages: 497-513
Summary lang: English
.
Category: math
.
Summary: A matrix $A$ is said to have \mbox{\boldmath$X$}-simple image eigenspace if any eigenvector $x$ belonging to the interval $\mbox{\boldmath$X$}=\{x\colon \underline x\leq x\leq\overline x\}$ is the unique solution of the system $A\otimes y=x$ in $\mbox{\boldmath$X$}$. The main result of this paper is a combinatorial characterization of such matrices in the linear algebra over max-min (fuzzy) semiring. The characterized property is related to and motivated by the general development of tropical linear algebra and interval analysis, as well as the notions of simple image set and weak robustness (or weak stability) that have been studied in max-min and max-plus algebras. (English)
Keyword: max-min algebra
Keyword: interval
Keyword: weakly robust
Keyword: weakly stable
Keyword: eigenspace
Keyword: simple image set
MSC: 08A72
MSC: 15A18
MSC: 15A80
idZBL: Zbl 06644307
idMR: MR3565766
DOI: 10.14736/kyb-2016-4-0497
.
Date available: 2016-10-20T08:03:30Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/145901
.
Reference: [1] Butkovič, P.: Simple image set of $(\max,+)$ linear mappings..Discrete Appl. Math. 105 (2000), 73-86. Zbl 0976.15013, MR 1780462, 10.1016/s0166-218x(00)00212-2
Reference: [2] Butkovič, P.: Max-linear Systems: Theory and Applications..Springer, 2010. 10.1007/978-1-84996-299-5
Reference: [3] Butkovič, P., Schneider, H., Sergeev, S.: Recognising weakly stable matrices..SIAM J. Control Optim. 50 (2012), 5, 3029-3051. MR 3022097, 10.1137/110837942
Reference: [4] Cechlárová, K.: Unique solvability of max-min fuzzy equations and strong regularity of matrices over fuzzy algebra..Fuzzy Sets and Systems 75 (1995), 165-177. Zbl 0852.15011, MR 1358219, 10.1016/0165-0114(95)00021-c
Reference: [5] Cechlárová, K.: Efficient computation of the greatest eigenvector in fuzzy algebra..Tatra Mt. Math. Publ. 12 (1997), 73-79. Zbl 0963.65041, MR 1607194
Reference: [6] Cechlárová, K.: On the powers of matrices in bottleneck/fuzzy algebra..Linear Algebra Appl. 246 (1996), 97-112. Zbl 0866.15009, MR 1407661, 10.1016/0024-3795(94)00338-6
Reference: [7] Cuninghame-Green, R. A.: Minimax algebra and applications..Adv. Imaging Electron Phys. 90 (1995), 1-121. Zbl 0739.90073, 10.1016/s1076-5670(08)70083-1
Reference: [8] Nola, A. Di, Gerla, B.: Algebras of Łukasiewicz's logic and their semiring reducts..In: Idempotent Mathematics and Mathematical Physics (G. L. Litvinov and V. P. Maslov, eds.), 2005, pp. 131-144. Zbl 1081.06009, MR 2149001, 10.1090/conm/377/06988
Reference: [9] Nola, A. Di, Russo, C.: Łukasiewicz transform and its application to compression and reconstruction of digital images..Inform. Sci. 177 (2007), 1481-1498. Zbl 1114.06009, MR 2307173, 10.1016/j.ins.2006.09.002
Reference: [10] Gavalec, M.: Periodicity in Extremal Algebra..Gaudeamus, Hradec Králové 2004.
Reference: [11] Gavalec, M., Plavka, J.: Fast algorithm for extremal biparametric eigenproblem..Acta Electrotechnica et Informatica 7 (2007), 3, 1-5.
Reference: [12] Gavalec, M., Zimmermann, K.: Classification of solutions to systems of two-sided equations with interval coefficients..Int. J. Pure Appl. Math. 45 (2008), 533-542. Zbl 1154.65036, MR 2426231
Reference: [13] Golan, J. S.: Semirings and Their Applications..Springer, 1999. Zbl 0947.16034, MR 1746739, 10.1007/978-94-015-9333-5
Reference: [14] Gondran, M., Minoux, M.: Graphs, dioids and semirings: new models and algorithms..Springer, 2008. Zbl 1201.16038, MR 2389137
Reference: [15] Heidergott, B., Olsder, G.-J., Woude, J. van der: Max-plus at Work..Princeton University Press, 2005. 10.1515/9781400865239
Reference: [16] Kolokoltsov, V. N., Maslov, V. P.: Idempotent Analysis and its Applications..Kluwer, Dordrecht 1997. Zbl 0941.93001, MR 1447629, 10.1007/978-94-015-8901-7
Reference: [17] Kreinovich, V., Lakeyev, A., Rohn, J., Kahl, R.: Computational Complexity and Feasibility of Data Processing and Interval Computations..Kluwer Academic Publishers, Dordrecht-Boston-London 1998. Zbl 0945.68077, MR 1491092, 10.1007/978-1-4757-2793-7
Reference: [18] Litvinov, G. L., (eds.), V. P. Maslov: Idempotent Mathematics and Mathematical Physics..AMS, Contemporary Mathematics 377, 2005. Zbl 1069.00011, MR 2145152, 10.1090/conm/377
Reference: [19] Litvinov, G. L., (eds.), S. N. Sergeev: Tropical and Idempotent Mathematics..AMS, Contemporary Mathematics 495, 2009. Zbl 1291.00065, MR 2581510, 10.1090/conm/495
Reference: [20] Molnárová, M., Myšková, H., Plavka, J.: The robustness of interval fuzzy matrices..Linear Algebra Appl. 438 (2013), 8, 3350-3364. MR 3023281, 10.1016/j.laa.2012.12.020
Reference: [21] Myšková, H., Plavka, J.: The X-robustness of interval fuzzy matrices..Linear Algebra Appl. 438 (2013), 6, 2757-2769. MR 3008532, 10.1016/j.laa.2012.11.026
Reference: [22] Myšková, H.: Interval eigenvectors of circulant matrices in fuzzy algebra..Acta Electrotechnica et Informatica 12 (2012), 3, 57-61. 10.2478/v10198-012-0033-3
Reference: [23] Myšková, H.: Weak stability of interval orbits of circulant matrices in fuzzy algebra..Acta Electrotechnica et Informatica 12 (2012), 3, 51-56. 10.2478/v10198-012-0032-4
Reference: [24] Plavka, J., Szabó, P.: The $O(n^2 )$ algorithm for the eigenproblem of an $\epsilon$-triangular Toeplitz matrices in max-plus algebra..Acta Electrotechnica et Informatica 9 (2009), 4, 50-54.
Reference: [25] Plavka, J., Szabó, P.: On the $\lambda$-robustness of matrices over fuzzy algebra..Discrete Appl. Math. 159 (2011), 5, 381-388. Zbl 1225.15027, MR 2755915, 10.1016/j.dam.2010.11.020
Reference: [26] Plavka, J.: On the weak robustness of fuzzy matrices..Kybernetika 49 (2013), 1, 128-140. Zbl 1267.15026, MR 3097386
Reference: [27] Rohn, J.: Systems of linear interval equations..Linear Algebra Appl. 126 (1989), 39-78. Zbl 1061.15003, MR 1040771, 10.1016/0024-3795(89)90004-9
Reference: [28] Sanchez, E.: Resolution of eigen fuzzy sets equations..Fuzzy Sets and Systems 1 (1978), 69-74. Zbl 0366.04001, MR 0494745, 10.1016/0165-0114(78)90033-7
Reference: [29] Sergeev, S.: Max-algebraic attraction cones of nonnegative irreducible matrices..Linear Algebra Appl. 435 (2011), 7, 1736-1757. Zbl 1226.15017, MR 2810668, 10.1016/j.laa.2011.02.038
Reference: [30] Tan, Yi-Jia: Eigenvalues and eigenvectors for matrices over distributive lattices..Linear Algebra Appl. 283 (1998), 257-272. Zbl 0932.15005, MR 1657171, 10.1016/s0024-3795(98)10105-2
Reference: [31] Zimmernann, K.: Extremální algebra (in Czech)..Ekon.ústav ČSAV Praha, 1976.
.

Files

Files Size Format View
Kybernetika_52-2016-4_1.pdf 368.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo