Previous |  Up |  Next

Article

Title: Task criticalness potential: A multiple criteria approach to project management (English)
Author: Brožová, Helena
Author: Bartoška, Jan
Author: Šubrt, Tomáš
Author: Rydval, Jan
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 52
Issue: 4
Year: 2016
Pages: 558-574
Summary lang: English
.
Category: math
.
Summary: The paper proposes the method evaluating tasks criticalness potential, which has been analysed by various project management tools. The criticalness potential of tasks, as opposed to a simple differentiation of tasks to critical and non-critical using the CPM method, considers not only time, but also resource, cost and topological aspects of a project schedule. In the paper, the tasks criticalness potential is defined applying task criticalness indicators which are further used as input for three various multiple criteria decision models. These models enable taking into account the principal project success criteria, i. e. time, resources and cost. The tasks criticalness potential cannot be determined using one indicator or one characteristic only. A selected multi-criteria approach based on task criticalness indicators differentiates between tasks more and less threatening to a project. This paper suggests different multiple criteria approaches to the quantification of task criticalness potential, compares them and discusses their advantages and disadvantages. (English)
Keyword: project management
Keyword: task threat
Keyword: criticalness potential
Keyword: multiple criteria evaluation
MSC: 90B50
MSC: 90B99
idZBL: Zbl 06644310
idMR: MR3565769
DOI: 10.14736/kyb-2016-4-0558
.
Date available: 2016-10-20T08:08:37Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/145905
.
Reference: [1] Almeida., A. T. de: Multicriteria model for selection of preventive maintenance intervals..Quality and Reliability Engineering International 28 (2012), 585-593. 10.1002/qre.1415
Reference: [2] Almeida, A. T. de, Ferreira, R. J. P., Cavalcante, C. A. V.: A review of the use of multicriteria and multi-objective models in maintenance and reliability..IMA J. Management Math. 26 (2015), 249-271. MR 3365477, 10.1093/imaman/dpv010
Reference: [3] Armstrong, M.: A Handbook of Human Resource Management Practice. Tenth edition..Kogan Page, London 2006.
Reference: [4] Bartoška, J., Brožová, H., Šubrt, T., Rydval, J.: Incorporating practitioners' expectations to project management teaching..In: Efficiency and Responsibility in Education 2013 (R. Kvasnička, ed.), Czech University of Life Sciences, Prague 2013, pp. 16-23.
Reference: [5] Bergatinos, G., Sanchez, E.: How to distribute costs associated with a delayed project..Ann. Oper. Res. 109 (2002), 159-174. MR 1929729, 10.1023/a:1016300218643
Reference: [6] Bowers, J.: Identifying critical activities in stochastic resource constrained networks..Omega - Int. J. Management Sci. 24 (1996), 37-46. 10.1016/0305-0483(95)00046-1
Reference: [7] Branzei, R., Ferrari, G., Fragnelli, V., Tijs, S.: Two approaches to the problem of sharing delay costs in joint projects..Ann. Oper. Res. 109 (2002), 357-372. Zbl 1005.91010, MR 1929740, 10.1023/a:1016372707256
Reference: [8] Castro, J., Gomez, D., Tejada, J.: A project game for PERT networks..Oper. Res. Lett. 35 (2007), 791-798. Zbl 1180.90030, MR 2361049, 10.1016/j.orl.2007.01.003
Reference: [9] Castro, J., Gomez, D., Tejada, J.: A polynomial rule for the problem of sharing delay costs in PERT networks..Comput. Oper. Res. 35 (2008), 2376-2387. Zbl 1180.90031, MR 2585228, 10.1016/j.cor.2006.11.003
Reference: [10] Chanas, S., Zielinski, P.: On the hardness of evaluating criticality of activities in a planar network with duration intervals..Oper. Res. Lett. 31 (2003), 53-59. Zbl 1036.90024, MR 1946735, 10.1016/s0167-6377(02)00174-8
Reference: [11] Chen, C. T., Huang, S. F.: Applying fuzzy method for measuring criticality in project network..Inform. Sci. 177 (2007), 2448-2458. Zbl 1124.90013, 10.1016/j.ins.2007.01.035
Reference: [12] Cho, J. G., Yum, B. J.: An uncertainty importance measure of activities in PERT networks..Int. J. Project Management 35 (1997), 2737-2770. Zbl 0942.90553, 10.1080/002075497194426
Reference: [13] Clegg, D., Barker, R.: Case Method Fast-Track: A RAD Approach..Addison-Wesley 2004.
Reference: [14] Cooke-Davies, T.: The "real" success factors on projects..Int. J. Project Management 20 (2002), 185-190. 10.1016/s0263-7863(01)00067-9
Reference: [15] Cruz, S., García, J., Herrerías, R.: Stochastic models alternative to the classical PERT for the treatment of the risk: mesokurtic and of constant variance..Central Europ. J. Oper. Res. 7 (1999), 159-175. MR 1739489
Reference: [16] Doran, G. T.: There's a S.M.A.R.T. way to write management's goals and objectives..Management Review 70 (1981), 35-36.
Reference: [17] Estévez-Fernández, A., Borm, P., Hamers, H.: Project game..Int. J. Game Theory 36 (2007), 149-176. MR 2342157, 10.1007/s00182-006-0058-x
Reference: [18] Ghomi, S. M. T. Fatemi, Teimouri, E.: Path critical index and activity critical index in PERT networks..Europ. J. Oper. Res. 141 (2002), 147-152. Zbl 0998.90009, MR 1925391, 10.1016/s0377-2217(01)00268-5
Reference: [19] Gong, D., Rowings, J. E.: Calculation of safe float use in risk-analysis-oriented network scheduling..Int. J. Project Management 13 (1995), 187-194. 10.1016/0263-7863(94)00004-v
Reference: [20] Hartman, F., Ashrafi, R.: Development of the SMART project planning framework.Int. J. Project Management 22 (2004), 499-510. 10.1016/j.ijproman.2003.12.003
Reference: [21] Haughey, D.: BOSCARD (Terms of Reference)..Project Smart 2000-2011. http://www.projectsmart.co.uk/boscard.html. Accessed 12 January 2011.
Reference: [22] Hwang, Ch. L., Yoon, K.: Multiple Attribute Decision Making..Springer Verlang, Berlin Heidelberg, New York 1981. Zbl 0563.90038, MR 0610245, 10.1007/978-3-642-48318-9
Reference: [23] Jakubík, M.: Propensity to criticalness in the PERT method, the expectation of time and distance of activities from project beginning..In: Proc. 29th International Conference on Mathematical Methods in Economics 2011 (J. Jablonsky ed.), Univ. Econom., Fac. Informat. and Stat., Prague 2011.
Reference: [24] Jr., J. E. Kelley: Critical-path planning and scheduling: Mathematical basis..Oper. Res. 9 (1961), 296-320. Zbl 0098.12103, MR 0143655, 10.1287/opre.9.3.296
Reference: [25] Lenahan, T.: Turnaround, Shutdown and Outage Management: Effective Planning and Step-by-Step Execution of Planned Maintenance Operations..Butterworth-Heinemann, An imprint of Elsevier, 2006.
Reference: [26] Madadi, M., Iranmanesh, H.: A management oriented approach to reduce a project duration and its risk (variability)..Europ. J. Oper. Res. 219 (2012), 751-761. 10.1016/j.ejor.2012.01.006
Reference: [27] Malcolm, D. G., Roseboom, J. R., Clark, C. E., Fazar, W.: Application of a technique for research and development program evaluation..Oper. Res. 7 (1959), 646-669. Zbl 1255.90070, 10.1287/opre.7.5.646
Reference: [28] Martin, J. J.: Distribution of the time through a directed, acyclic network..Oper. Res. 13 (1965), 46-66. Zbl 0137.39302, MR 0191650, 10.1287/opre.13.1.46
Reference: [29] Mateo, J. R. San Cristóbal: Management Science, Operations Research and Project Management - Modelling, Evaluation, Scheduling, Monitoring..Gower Publishing 2015.
Reference: [30] Mota, C. M. M., Almeida, A. T. de: A multicriteria decision model for assigning priority classes to activities in project management..Ann. Oper. Res. 199 (2011), 361-372. Zbl 1251.90260, 10.1007/s10479-011-0853-z
Reference: [31] Roy, B.: The outranking approach and the foundations of ELECTRE methods..Theory and Decision31 (1991), 49-73. MR 1118821, 10.1007/bf00134132
Reference: [32] Roy, B., Mousseau, W.: A theoretical framework for analysing the notion of relative importance of criteria..J. Multi-criteria Decision Analysis 5 (1996), 145-149. Zbl 0847.90002, 10.1002/(sici)1099-1360(199606)5:2<145::aid-mcda99>3.0.co;2-5
Reference: [33] Saaty, T. L.: Relative Measurement and its generalization in decision making: why pairwise comparisons are central in mathematics for the measurement of intangible factors: The analytic hierarchy/network process..Rev. R. Acad. Cien. Serie A. Mat. 102 (2008), 251-318. Zbl 1177.62009, MR 2479460, 10.1007/bf03191825
Reference: [34] Smith, M., Erwin., J.: Role \& Responsibility Charting (RACI)..Project Management Forum 2005.
Reference: [35] Tofallis, C.: Add or multiply? A tutorial on ranking and choosing with multiple criteria..A Tutorial on Ranking and Choosing with Multiple Criteria. INFORMS Transactions on Education 14 (2014), 109-119. 10.1287/ited.2013.0124
Reference: [36] Weaver, P.: A brief history of scheduling - Back to the future..myPrimavera konference, Australia 2006.
Reference: [37] Wideman, R. M.: Project and Program Risk Management..Project Management Institute 1992.
Reference: [38] Williams, T. M.: Criticality in stochastic networks..J. Oper. Res. Soc. 43 (1992), 353-357. Zbl 0825.90400, 10.1038/sj/jors/0430407
Reference: [39] Yakhchali, S. H.: A path enumeration approach for the analysis of critical activities in fuzzy networks..Inform. Sci. 204 (2012), 23-35. Zbl 1250.90040, 10.1016/j.ins.2012.01.025
Reference: [40] Yemm, G.: Essential Guide to Leading Your Team: How to Set Goals, Measure Performance and Reward Talent..Pearson Education, Harlow 2013.
.

Files

Files Size Format View
Kybernetika_52-2016-4_4.pdf 437.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo