Previous |  Up |  Next

Article

Title: Group synchronization of diffusively coupled harmonic oscillators (English)
Author: Zhao, Liyun
Author: Liu, Jun
Author: Xiang, Lan
Author: Zhou, Jin
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 52
Issue: 4
Year: 2016
Pages: 629-647
Summary lang: English
.
Category: math
.
Summary: This paper considers group synchronization issue of diffusively directed coupled harmonic oscillators for two cases with nonidentical and identical agent dynamics. For the case of coupled nonidentical harmonic oscillators with positive coupling, it is demonstrated that distributed group synchronization can always be achieved under two kinds of network structures, i. e., the strongly connected graph and the acyclic partition topology with a directed spanning tree. It is interesting to find that the group synchronization states under acyclic partition are some periodic orbits with the same frequency and are simply related with the initial values of certain group regardless of ones of the other groups. For the case of coupled identical harmonic oscillators with positive and negative coupling, some generic algebraic criteria on group synchronization with both local continuous and instantaneous interaction are established respectively. In particular, an explicit expression of group synchronization states in terms of initial values of the agents can be obtained by the property of acyclic partition topology, and so it is very convenient to yield the desired group synchronization in practical application. Finally, numerical examples illustrate and visualize the effectiveness and feasibility of theoretical results. (English)
Keyword: group synchronization
Keyword: coupled harmonic oscillators
Keyword: directed topology
Keyword: acyclic partition
MSC: 70K40
MSC: 74H65
idZBL: Zbl 06644314
idMR: MR3565773
DOI: 10.14736/kyb-2016-4-0629
.
Date available: 2016-10-20T08:16:38Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/145909
.
Reference: [1] Ballard, L., Cao, C. Y., Ren, W.: Distributed discrete-time coupled harmonic oscillators with application to synchronised motion coordination..IET Control Theory Appl. 4 (2010), 806-816. MR 2758795, 10.1049/iet-cta.2009.0053
Reference: [2] Chen, Y., L$\ddot{\mathrm{u}}$, J. H., Yu, X. H., Lin, Z. L.: Consensus of discrete-time second-order multiagent systems based on infinite products of general stochastic matrices..SIAM J. Control Optim. 51 (2013), 3274-3301. MR 3090151, 10.1137/110850116
Reference: [3] Cheng, S., Ji, C. J., Zhou, J.: Infinite-time and finite-time synchronization of coupled harmonic oscillators..Physica Scripta 84 (2011), 035006. Zbl 1262.34057, 10.1088/0031-8949/84/03/035006
Reference: [4] Desoer, C., Vidyasagar, M.: Feedback Systems: Input-output Properties..Academic, New York 1975. Zbl 1153.93015, MR 0490289
Reference: [5] Godsil, C., Royle, G.: Algebraic Graph Theory..Springer-Verlag, London 2001. Zbl 0968.05002, MR 1829620, 10.1007/978-1-4613-0163-9
Reference: [6] He, W. L., Qian, F., Lam, J., Chen, G. R., Han, Q. L., Kurths, J.: Quasi-synchronization of heterogeneous dynamic networks via distributed impulsive control: error estimation, optimization and design..Automatica 62 (2015), 249-262. Zbl 1330.93011, MR 3423996, 10.1016/j.automatica.2015.09.028
Reference: [7] He, W. L., Zhang, B., Han, Q. L., Qian, F., Kurths, J., Cao, J. D.: Leader-following consensus of nonlinear multi-agent systems with stochastic sampling..IEEE Trans. Cybernetics (2016), 1-12. 10.1109/tcyb.2015.2514119
Reference: [8] Hong, Y. G., Hu, J. P., Gao, L. X.: Tracking control for multi-agent consensus with an active leader and variable topology..Automatica 42 (2006), 1177-1182. Zbl 1117.93300, MR 2230987, 10.1016/j.automatica.2006.02.013
Reference: [9] Horn, R., Johnson, C. R.: Matrix Analysis..Cambridge University Press, Cambridge 1990. Zbl 0801.15001, MR 1084815, 10.1002/zamm.19870670330
Reference: [10] Liu, J., Zhou, J.: Distributed impulsive group consensus in second-order multi-agent systems under directed topology..Int. J. Control 88 (2015), 910-919. Zbl 1316.93005, MR 3325386, 10.1080/00207179.2014.985717
Reference: [11] Lu, S. J., Chen, L.: A general synchronization method of chaotic communication system via kalman filtering..Kybernetika 44 (2008), 43-52. MR 2405054
Reference: [12] Lu, W. L., Liu, B., Chen, T. P.: Cluster synchronization in networks of coupled nonidentical dynamical systems..Chaos 20 (2010), 013120. Zbl 1311.34117, MR 2730167, 10.1063/1.3329367
Reference: [13] Ma, M. H., Zhang, H., Cai, J. P., Zhou, J.: Impulsive practical synchronization of n-dimensional nonautonomous systems with parameter mismatch..Kybernetika 49 (2013), 539-553. Zbl 1274.70039, MR 3117913
Reference: [14] Qin, J. H., Yu, C. B.: Cluster consensus control of generic linear multi-agent systems under directed topology with acyclic partition..Automatica 49 (2013), 2898-2905. MR 3084481, 10.1016/j.automatica.2013.06.017
Reference: [15] Ren, W.: Synchronization of coupled harmonic oscillators with local interaction..Automatica 44 (2008), 3195-3200. Zbl 1153.93421, MR 2531426, 10.1016/j.automatica.2008.05.027
Reference: [16] Ren, W., Cao, Y. C.: Distributed Coordination of Multi-agent Networks: Emergent Problems, Models, and Issues..Springer-Verlag, London 2011. Zbl 1225.93003
Reference: [17] Slotine, J. J. E., Li, W. P.: Applied Nonlinear Control..Prentice Hall, N.J. 1991. Zbl 0753.93036
Reference: [18] Su, H. S., Wang, X. F., Lin, Z. L.: Synchronization of coupled harmonic oscillators in a dynamic proximity network..Automatica 45 (2009), 2286-2291. Zbl 1179.93102, MR 2890789, 10.1016/j.automatica.2009.05.026
Reference: [19] Su, H. S., Chen, M., Wang, X. F., Wang, H. W., Valeyev, N. V.: Adaptive cluster synchronisation of coupled harmonic oscillators with multiple leaders..IET Control Theory Appl. 7 (2013), 765-772. MR 3100186, 10.1049/iet-cta.2012.0910
Reference: [20] Wang, K. H., Fu, X. C., Li, K. Z.: Cluster synchronization in community networks with nonidentical nodes..Chaos 19 (2009), 023106. Zbl 1309.34107, MR 2548747, 10.1063/1.3125714
Reference: [21] Wu, W., Zhou, W. J., Chen, T. P.: Cluster synchronization of linearly coupled complex networks under pinning control..IEEE Trans. Circuits Syst. I. Reg. Pap. 56 (2009), 819-839. MR 2724977, 10.1109/tcsi.2008.2003373
Reference: [22] Xia, W. G., Cao, M.: Clustering in diffusively coupled networks..Automatica 47 (2011), 2395-2405. Zbl 1228.93015, MR 2886867, 10.1016/j.automatica.2011.08.043
Reference: [23] Yang, T.: Impulsive Control Theory..Springer 2001. Zbl 0996.93003, MR 1850661
Reference: [24] Yu, W. W., Chen, G. R., Cao, M., Kurths, J.: Second-order consensus for multioscillator systems with directed topologies and nonlinear dynamics..IEEE T. Syst. Man Cy. B 40 (2010), 881-891. 10.1109/tsmcb.2009.2031624
Reference: [25] Yu, C. B., Qin, J. H., Gao, H. J.: Cluster synchronization in directed networks of partial-state coupled linear systems under pinning control..Automatica 50 (2014), 2341-2349. Zbl 1297.93019, MR 3256724, 10.1016/j.automatica.2014.07.013
Reference: [26] Yu, J. Y., Wang, L.: Group consensus of multi-agent systems with undirected communication graphs..In: Proc. 7th Asian Control Conference 2009, pp. 105-110.
Reference: [27] Zhang, H., Zhou, J.: Synchronization of sampled-data coupled harmonic oscillators with control inputs missing..Syst. Control Lett. 61 (2012), 1277-1285. Zbl 1256.93064, MR 2998215, 10.1016/j.sysconle.2012.10.001
Reference: [28] Zhao, L. Y., Wu, Q. J., Zhou, J.: Impulsive sampled-data synchronization of directed coupled harmonic oscillators..In: Proc. 33rd Chinese Control Conference 2014, pp. 3950-3954. 10.1109/chicc.2014.6895598
Reference: [29] Zhou, J., Zhang, H., Xiang, L., Wu, Q. J.: Synchronization of coupled harmonic oscillators with local instantaneous interaction..Automatica 48 (2012), 1715-1721. Zbl 1267.93008, MR 2950421, 10.1016/j.automatica.2012.05.022
.

Files

Files Size Format View
Kybernetika_52-2016-4_8.pdf 564.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo