Previous |  Up |  Next

Article

Title: On the viscous Allen-Cahn and Cahn-Hilliard systems with Willmore regularization (English)
Author: Makki, Ahmad
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 61
Issue: 6
Year: 2016
Pages: 685-725
Summary lang: English
.
Category: math
.
Summary: We consider the viscous Allen-Cahn and Cahn-Hilliard models with an additional term called the nonlinear Willmore regularization. First, we are interested in the well-posedness of these two models. Furthermore, we prove that both models possess a global attractor. In addition, as far as the viscous Allen-Cahn equation is concerned, we construct a robust family of exponential attractors, i.e.\ attractors which are continuous with respect to the perturbation parameter. Finally, we give some numerical simulations which show the effects of the viscosity term on the anisotropic and isotropic Cahn-Hilliard equation. (English)
Keyword: viscous Cahn-Hilliard equation
Keyword: viscous Allen-Cahn equation
Keyword: Willmore regularization
Keyword: well-posedness of models
Keyword: global attractor
Keyword: robust exponential attractors
Keyword: anisotropy
Keyword: simulations
MSC: 35B40
MSC: 35B41
MSC: 35B45
MSC: 35K55
idZBL: Zbl 06674852
idMR: MR3572461
DOI: 10.1007/s10492-016-0153-7
.
Date available: 2016-11-26T20:48:14Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/145916
.
Reference: [1] Allen, S. M., Cahn, J. W.: A macroscopic theory for antiphase boundary motion and its application to antiphase domain coarsening.Acta Metall. 27 (1979), 1085-1095. 10.1016/0001-6160(79)90196-2
Reference: [2] Babin, A. V., Vishik, M. I.: Attractors of Evolution Equations.Studies in Mathematics and Its Applications 25 North-Holland, Amsterdam (1992). Zbl 0778.58002, MR 1156492
Reference: [3] Bai, F., Elliott, C. M., Gardiner, A., Spence, A., Stuart, A. M.: The viscous Cahn-Hilliard equation. I: Computations.Nonlinearity 8 131-160 (1995). Zbl 0818.35045, MR 1328591
Reference: [4] Barrett, J. W., Blowey, J. F.: Finite element approximation of the Cahn-Hilliard equation with concentration dependent mobility.Math. Comput. (1999), 68 487-517. Zbl 1126.65321, MR 1609678, 10.1090/S0025-5718-99-01015-7
Reference: [5] Cahn, J. W.: On spinodal decomposition.Acta Metall. 9 (1961), 795-801. 10.1016/0001-6160(61)90182-1
Reference: [6] Cahn, J. W., Hilliard, J. E.: Free energy of a non-uniform system I: Interfacial free energy.J. Chem. Phys. 28 (1958), 258-267. 10.1063/1.1744102
Reference: [7] Chen, F., Shen, J.: Efficient energy stable schemes with spectral discretization in space for anisotropic Cahn-Hilliard systems.Commun. Comput. Phys. 13 (2013), 1189-1208. MR 2988885, 10.4208/cicp.101111.110512a
Reference: [8] Cherfils, L., Gatti, S.: Robust family of exponential attractors for isotropic crystal models.Math. Methods Appl. Sci. 39 (2016), 1705-1729. Zbl 1339.35053, MR 3499040, 10.1002/mma.3597
Reference: [9] Cherfils, L., Miranville, A., Zelik, S.: The Cahn-Hilliard equation with logarithmic potentials.Milan J. Math. 79 (2011), 561-596. Zbl 1250.35129, MR 2862028, 10.1007/s00032-011-0165-4
Reference: [10] Eden, A., Foias, C., Nicolaenko, B., Temam, R.: Exponential Attractors for Dissipative Evolution Equations.Research in Applied Mathematics 37 Masson, Paris; Wiley, Chichester (1994). Zbl 0842.58056, MR 1335230
Reference: [11] Efendiev, M., Miranville, A., Zelik, S.: Exponential attractors for a singularly perturbed Cahn-Hilliard system.Math. Nachr. 272 (2004), 11-31. Zbl 1046.37047, MR 2079758, 10.1002/mana.200310186
Reference: [12] Efendiev, M., Zelik, S., Miranville, A.: Exponential attractors and finite-dimensional reduction for non-autonomous dynamical systems.Proc. R. Soc. Edinb., Sect. A, Math. 13 (2005), 703-730. Zbl 1088.37005, MR 2173336, 10.1017/S030821050000408X
Reference: [13] Elliott, C. M.: The Cahn-Hilliard model for the kinetics of phase separation.Mathematical Models for Phase Change Problems, Obidos 1988 Int. Ser. Numer. Math. 88 Birkkhäuser, Basel 35-73 (1989). Zbl 0692.73003, MR 1038064
Reference: [14] Elliott, C. M., Stuart, A. M.: Viscous Cahn-Hilliard equation. II: Analysis.J. Differ. Equations 128 387-414 (1996). Zbl 0855.35067, MR 1398327
Reference: [15] Fabrie, P., Galusinski, C., Miranville, A., Zelik, S.: Uniform exponential attractors for a singularly perturbed damped wave equation.Discrete Contin. Dyn. Syst. 10 (2004), 211-238. Zbl 1060.35011, MR 2026192, 10.3934/dcds.2004.10.211
Reference: [16] Fife, P. C.: Models for phase separation and their mathematics.Electron. J. Differ. Equ. (electronic only) 2000 (2000), Paper No. 48, 26 pages. Zbl 0957.35062, MR 1772733
Reference: [17] Gatti, S., Grasselli, M., Miranville, A., Pata, V.: A construction of a robust family of exponential attractors.Proc. Am. Math. Soc. 134 (2006), 117-127. Zbl 1078.37047, MR 2170551, 10.1090/S0002-9939-05-08340-1
Reference: [18] Grinfeld, M., Novick-Cohen, A.: The viscous Cahn-Hilliard equation: Morse decomposition and structure of the global attractor.Trans. Am. Math. Soc. 351 2375-2406 (1999). Zbl 0927.35045, MR 1650085, 10.1090/S0002-9947-99-02445-9
Reference: [19] Gurtin, M. E.: Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance.Physica D 92 (1996), 178-192. Zbl 0885.35121, MR 1387065, 10.1016/0167-2789(95)00173-5
Reference: [20] Hecht, F.: New development in FreeFem++.J. Numer. Math. 20 (2012), 251-256. Zbl 1266.68090, MR 3043640, 10.1515/jnum-2012-0013
Reference: [21] Makki, A., Miranville, A.: Well-posedness for one-dimensional anisotropic Cahn-Hilliard and Allen-Cahn systems.Electron. J. Differ. Equ. (electronic only) 2015 (2015), Paper No. 04, 15 pages. Zbl 1334.35106, MR 3335735
Reference: [22] Makki, A., Miranville, A.: Existence of solutions for anisotropic Cahn-Hilliard and Allen-Cahn systems in higher space dimensions.Discrete Contin. Dyn. Syst. Ser. S (2016), 9 759-775. Zbl 1346.35029, MR 3503639
Reference: [23] Miranville, A.: Asymptotic behavior of a sixth-order Cahn-Hilliard system.Cent. Eur. J. Math. 12 (2014), 141-154. Zbl 1286.35047, MR 3121828
Reference: [24] Miranville, A., Pata, V., Zelik, S.: Exponential attractors for singularly perturbed damped wave equations: a simple construction.Asymptot. Anal. 53 (2007), 1-12. Zbl 1139.35030, MR 2343457
Reference: [25] Miranville, A., Quintanilla, R.: A generalization of the Allen-Cahn equation.IMA J. Appl. Math. 80 410-430 (2015). Zbl 1320.35346, MR 3335166, 10.1093/imamat/hxt044
Reference: [26] Miranville, A., Zelik, S.: Robust exponential attractors for Cahn-Hilliard type equations with singular potentials.Math. Methods Appl. Sci. 27 (2004), 545-582. Zbl 1050.35113, MR 2041814, 10.1002/mma.464
Reference: [27] Miranville, A., Zelik, S.: Exponential attractors for the Cahn-Hilliard equation with dynamic boundary conditions.Math. Methods Appl. Sci. 28 (2005), 709-735. Zbl 1068.35020, MR 2125817, 10.1002/mma.590
Reference: [28] Miranville, A., Zelik, S.: Attractors for dissipative partial differential equations in bounded and unbounded domains.Handbook of Differential Equations: Evolutionary Equations, Vol. IV. C. M. Dafermos et al. Handbook of Differential Equations Elsevier, Amsterdam 103-200 (2008). Zbl 1221.37158, MR 2508165, 10.1016/S1874-5717(08)00003-0
Reference: [29] Novick-Cohen, A.: On the viscous Cahn-Hilliard equation.Material Instabilities in Continuum Mechanics (Edinburgh, 1985-1986) Oxford Sci. Publ. Oxford Univ. Press, New York (1988), 329-342. Zbl 0632.76119, MR 0970531
Reference: [30] Novick-Cohen, A.: The Cahn-Hilliard equation: Mathematical and modeling perspectives.Adv. Math. Sci. Appl. (1998), 8 965-985. Zbl 0917.35044, MR 1657208
Reference: [31] Novick-Cohen, A.: The Cahn-Hilliard equation.Handbook of Differential Equations: Evolutionary Equations. Vol. 4 C. M. Dafermos et al. Handbook of Differential Equations Elsevier/North-Holland, Amsterdam 201-228 (2008). Zbl 1185.35001, MR 2508166
Reference: [32] Saoud, B.: Attracteurs Pour des Systèmes Dissipatifs non Autonomes.PhD thesis, Université de Poitiers French (2011).
Reference: [33] Taylor, J. E., Cahn, J. W.: Diffuse interfaces with sharp corners and facets: Phase field models with strongly anisotropic surfaces.Physica D 112 (1998), 381-411. Zbl 0930.35201, MR 1607466, 10.1016/S0167-2789(97)00177-2
Reference: [34] Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics.Applied Mathematical Sciences 68 Springer, New York (1997). Zbl 0871.35001, MR 1441312, 10.1007/978-1-4612-0645-3
Reference: [35] Torabi, S., Lowengrub, J., Voigt, A., Wise, S.: A new phase-field model for strongly anisotropic systems.Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 465 (2009), 1337-1359. Zbl 1186.80014, MR 2500806, 10.1098/rspa.2008.0385
Reference: [36] Wise, S., Kim, J., Lowengrub, J.: Solving the regularized, strongly anisotropic Cahn-Hilliard equation by an adaptive nonlinear multigrid method.J. Comput. Phys. 226 (2007), 414-446. Zbl 1310.82044, MR 2356365, 10.1016/j.jcp.2007.04.020
.

Files

Files Size Format View
AplMat_61-2016-6_4.pdf 1.514Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo