Previous |  Up |  Next

Article

Title: Strong laws of large numbers for sequences of blockwise and pairwise $m$-dependent random variables in metris spaces (English)
Author: Quang, Nguyen Van
Author: Nguyen, Pham Tri
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 61
Issue: 6
Year: 2016
Pages: 669-684
Summary lang: English
.
Category: math
.
Summary: The aim of the paper is to establish strong laws of large numbers for sequences of blockwise and pairwise $m$-dependent random variables in a convex combination space with or without compactly uniformly integrable condition. Some of our results are even new in the case of real random variables. (English)
Keyword: strong law of large numbers
Keyword: convex combination space
Keyword: pairwise $m$-dependent
Keyword: blockwise $m$-dependent
Keyword: compactly uniformly integrable
MSC: 60B05
MSC: 60F15
MSC: 60G50
idZBL: Zbl 06674851
idMR: MR3572460
DOI: 10.1007/s10492-016-0152-8
.
Date available: 2016-11-26T20:45:56Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/145915
.
Reference: [1] Bo, Z.: Marcinkiewicz-Zygmund law for sequences of blockwise $m$-dependent random variables.Statist. Probab. Lett. 38 (1998), 83-88. Zbl 0908.60009, MR 1629524, 10.1016/S0167-7152(97)00157-0
Reference: [2] Choi, B. D., Sung, S. H.: On convergence of $(S_n -ES_n)/n^{1/r}$, $1<r<2$, for pairwise independent random variables.Bull. Korean Math. Soc. 22 (1985), 79-82. MR 0826361
Reference: [3] Etemadi, N.: An elementary proof of the strong law of large numbers.Z. Wahrscheinlichkeitstheor. Verw. Geb. 55 (1981), 119-122. Zbl 0438.60027, MR 0606010, 10.1007/BF01013465
Reference: [4] Gaposhkin, V. F.: On the strong law of large numbers for blockwise independent and blockwise orthogonal random variables.Theory Probab. Appl. 39 677-684 (1994), translation from Teor. Veroyatn. Primen. Russian 39 804-812 (1994). Zbl 0847.60022, MR 1347654, 10.1137/1139053
Reference: [5] Móricz, F.: Strong limit theorems for blockwise $m$-dependent and blockwise quasi-orthogonal sequences of random variables.Proc. Am. Math. Soc. 101 (1987), 709-715. MR 0911038, 10.2307/2046676
Reference: [6] Quang, N. V., Thuan, N. T.: On the strong laws of large numbers for double arrays of random variables in convex combination spaces.Acta Math. Hung. 134 (2012), 543-564. Zbl 1265.60057, MR 2886225, 10.1007/s10474-011-0168-1
Reference: [7] Terán, P., Molchanov, I.: The law of large numbers in a metric space with a convex combination operation.J. Theor. Probab. 19 (2006), 875-898. Zbl 1113.60014, MR 2279607, 10.1007/s10959-006-0043-0
Reference: [8] Thanh, L. V.: Strong laws of large numbers for sequences of blockwise and pairwise $m$-dependent random variables.Bull. Inst. Math., Acad. Sin. 33 (2005), 397-405. Zbl 1084.60506, MR 2184437
Reference: [9] Thuan, N. T., Quang, N. V., Nguyen, P. T.: Complete convergence for arrays of rowwise independent random variables and fuzzy random variables in convex combination spaces.Fuzzy Sets Syst. 250 (2014), 52-68. Zbl 1334.60041, MR 3223442
.

Files

Files Size Format View
AplMat_61-2016-6_3.pdf 292.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo