Previous |  Up |  Next

Article

Keywords:
$2$-group; generalized quaternion group; iteration digraph; cycle; indegree; fixed point; regular digraph
Summary:
A digraph is associated with a finite group by utilizing the power map ${f\colon G \rightarrow G}$ defined by $f(x)=x^{k}$ for all $x\in G$, where $k$ is a fixed natural number. It is denoted by $\gamma _{G}(n,k)$. In this paper, the generalized quaternion and $2$-groups are studied. The height structure is discussed for the generalized quaternion. The necessary and sufficient conditions on a power digraph of a $2$-group are determined for a $2$-group to be a generalized quaternion group. Further, the classification of two generated $2$-groups as abelian or non-abelian in terms of semi-regularity of the power digraphs is completed.
References:
[1] Ahmad, U., Husnine, S.: The power digraphs of finite groups. (to appear) in Util. Math.
[2] Ahmad, U., Husnine, S.: Characterization of power digraphs modulo $n$. Commentat. Math. Univ. Carol. 52 (2011), 359-367. MR 2843229 | Zbl 1249.11002
[3] Ahmad, U., Moeen, M.: The digraphs arising by the power maps of generalized quaternion groups. (to appear) in J. Algebra Appl. DOI:10.1142/S0219498817501791. DOI 10.1142/S0219498817501791
[4] Ahmad, U., Syed, H.: On the heights of power digraphs modulo $n$. Czech. Math. J. 62 (2012), 541-556. DOI 10.1007/s10587-012-0028-3 | MR 2990193 | Zbl 1265.05274
[5] Blackburn, N.: Generalizations of certain elementary theorems on {$p$}-groups. Proc. Lond. Math. Soc. (3) 11 (1961), 1-22. MR 0122876 | Zbl 0102.01903
[6] Ćepuli{ć}, V., Pyliavska, O. S.: A class of nonabelian nonmetacyclic finite $2$-groups. Glas. Mat., Ser. (3) 41 (2006), 65-70. DOI 10.3336/gm.41.1.06 | MR 2242392 | Zbl 1115.20015
[7] Husnine, S. M., Ahmad, U., Somer, L.: On symmetries of power digraphs. Util. Math. 85 (2011), 257-271. MR 2840802 | Zbl 1251.05066
[8] Janko, Z.: A classification of finite $2$-groups with exactly three involutions. J. Algebra 291 (2005), 505-533. DOI 10.1016/j.jalgebra.2005.02.007 | MR 2163481 | Zbl 1081.20025
[9] Lucheta, C., Miller, E., Reiter, C.: Digraphs from powers modulo $p$. Fibonacci Q. 34 (1996), 226-239. MR 1390409 | Zbl 0855.05067
[10] Sha, M.: Digraphs from endomorphisms of finite cyclic groups. J. Comb. Math. Comb. Comput. 83 (2012), 105-120. MR 3027303 | Zbl 1302.05071
[11] Somer, L., Křížek, M.: On a connection of number theory with graph theory. Czech. Math. J. 54 (2004), 465-485. DOI 10.1023/B:CMAJ.0000042385.93571.58 | MR 2059267 | Zbl 1080.11004
[12] Somer, L., Křížek, M.: On semiregular digraphs of the congruence $x^k\equiv y\pmod n$. Commentat. Math. Univ. Carol. 48 (2007), 41-58. MR 2338828 | Zbl 1174.05058
[13] Somer, L., Křížek, M.: On symmetric digraphs of the congruence $x^k\equiv y\pmod n$. Discrete Math. 309 (2009), 1999-2009. DOI 10.1016/j.disc.2008.04.009 | MR 2510326 | Zbl 1208.05041
[14] Wilson, B.: Power digraphs modulo $n$. Fibonacci Q. 36 (1998), 229-239. MR 1627384 | Zbl 0936.05049
Partner of
EuDML logo