Previous |  Up |  Next

Article

Title: Poisson transforms for differential forms (English)
Author: Harrach, Christoph
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 52
Issue: 5
Year: 2016
Pages: 303-311
Summary lang: English
.
Category: math
.
Summary: We give a construction of a Poisson transform mapping density valued differential forms on generalized flag manifolds to differential forms on the corresponding Riemannian symmetric spaces, which can be described entirely in terms of finite dimensional representations of reductive Lie groups. Moreover, we will explicitly generate a family of degree-preserving Poisson transforms whose restriction to real valued differential forms has coclosed images. In addition, as a transform on sections of density bundles it can be related to the classical Poisson transform, proving that we produced a natural generalization of the classical theory. (English)
Keyword: Poisson transforms
Keyword: integral transform of differential forms
Keyword: homogeneous spaces
MSC: 22E46
MSC: 53C65
idZBL: Zbl 06674906
idMR: MR3610865
DOI: 10.5817/AM2016-5-303
.
Date available: 2016-12-20T21:56:45Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/145937
.
Reference: [1] Čap, A., Slovák, J.: Parabolic geometries I – Background and general theory.AMS, 2009. Zbl 1183.53002, MR 2532439
Reference: [2] Gaillard, P.-Y.: Transformation de Poisson de formes différentielles. Le cas de l’espace hyperbolique.Comment. Math. Helv 61 (4) (1986), 581–616, (French). Zbl 0636.43007, MR 0870708, 10.1007/BF02621934
Reference: [3] Greub, W., Halperin, S., Vanstone, R.: Connections, curvature, and cohomology.vol. I, Academic Press, 1972. Zbl 0322.58001
Reference: [4] Helgason, S.: Groups and geometric analysis. Integral geometry, invariant differential operators and spherical functions.Pure Appl. Math. (1984). Zbl 0543.58001, MR 1790156
Reference: [5] Helgason, S.: Geometric analysis on symmetric spaces.Mathematical Surveys and Monographs, vol. 39, AMS, 1994. Zbl 0809.53057, MR 1280714
Reference: [6] Thurston, W.: The geometry and topology of three manifolds.Lecture Notes, available online: http://library.msri.org/books/gt3m.
Reference: [7] van der Ven, H.: Vector valued Poisson transforms on Riemannian symmetric spaces of rank one.J. Funct. Anal. 119 (1994), 358–400. Zbl 0813.53034, MR 1261097, 10.1006/jfan.1994.1015
Reference: [8] Yang, A.: Vector valued Poisson transforms on Riemannian symmetric spaces.Ph.D. thesis, Massachusetts Institute of Technology, 1994.
.

Files

Files Size Format View
ArchMathRetro_052-2016-5_4.pdf 503.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo