Previous |  Up |  Next

Article

Title: Projective structure, $\widetilde{\operatorname{SL}}(3,\mathbb{R})$ and the symplectic Dirac operator (English)
Author: Holíková, Marie
Author: Křižka, Libor
Author: Somberg, Petr
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 52
Issue: 5
Year: 2016
Pages: 313-324
Summary lang: English
.
Category: math
.
Summary: Inspired by the results on symmetries of the symplectic Dirac operator, we realize symplectic spinor fields and the symplectic Dirac operator in the framework of (the double cover of) homogeneous projective structure in two real dimensions. The symmetry group of the homogeneous model of the double cover of projective geometry in two real dimensions is ${\widetilde{}}(3,)$. (English)
Keyword: projective structure
Keyword: Segal-Shale-Weil representation
Keyword: generalized Verma modules
Keyword: symplectic Dirac operator
Keyword: $(3,)$
MSC: 53C30
MSC: 53D05
MSC: 81R25
idZBL: Zbl 06674907
idMR: MR3610866
DOI: 10.5817/AM2016-5-313
.
Date available: 2016-12-20T21:57:51Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/145938
.
Reference: [1] Collingwood, D.H., Shelton, B.: A duality theorem for extensions of induced highest weight modules.Pacific J. Math. 146 (2) (1990), 227–237. Zbl 0733.17005, MR 1078380, 10.2140/pjm.1990.146.227
Reference: [2] De Bie, H., Holíková, M., Somberg, P.: Basic aspects of symplectic Clifford analysis for the symplectic Dirac operator.arXiv:1511.04189, 2015.
Reference: [3] De Bie, H., Somberg, P., Souček, V.: The metaplectic Howe duality and polynomial solutions for the symplectic Dirac operator.J. Geom. Phys. 75 (2014), 120–128. Zbl 1279.30051, MR 3126939, 10.1016/j.geomphys.2013.09.005
Reference: [4] Habermann, K., Habermann, L.: Introduction to symplectic Dirac operators.Lecture Notes in Math., vol. 1887, Springer-Verlag, Berlin, 2006. Zbl 1102.53032, MR 2252919, 10.1007/978-3-540-33421-7_4
Reference: [5] Kobayashi, T., Ørsted, B., Somberg, P., Souček, V.: Branching laws for Verma modules and applications in parabolic geometry. I.Adv. Math. 285 (2015), 1796–1852. Zbl 1327.53044, MR 3406542, 10.1016/j.aim.2015.08.020
Reference: [6] Kostant, B.: Symplectic spinors.Symposia Mathematica, Progress in Mathematics, vol. XIV, Academic Press, London, 1974, pp. 139–152. Zbl 0321.58015, MR 0400304
Reference: [7] Kostant, B.: Verma modules and the existence of quasi-invariant differential operators, Non-Commutative Harmonic Analysis.Lecture Notes in Math., vol. 466, Springer, Berlin, 1975, pp. 101–128. MR 0396853
Reference: [8] Křižka, L., Somberg, P.: Algebraic analysis of scalar generalized Verma modules of Heisenberg parabolic type I.: $A_n$-series.arXiv:1502.07095, to appear in Transformation Groups, 2015. MR 3449111
Reference: [9] Křižka, L., Somberg, P.: Algebraic analysis on scalar generalized Verma modules of Heisenberg parabolic type II.: $C_n, D_n$-series.(in preparation).
Reference: [10] Ørsted, B.: Generalized gradients and Poisson transforms.Global analysis and harmonic analysis, Sémin. Congr., vol. 4, Soc. Math. France, Paris, 2000, pp. 235–249. Zbl 0989.22018, MR 1822363
Reference: [11] Somberg, P., Šilhan, J.: Higher symmetries of the symplectic Dirac operator.(in preparation).
Reference: [12] Torasso, P.: Quantification géométrique, opérateurs d’entrelacement et représentations unitaires de ${\widetilde{SL}}_3(\mathbb{R})$.Acta Math. 150 (1) (1983), 153–242. MR 0709141, 10.1007/BF02392971
Reference: [13] Wolf, J.A.: Unitary representations of maximal parabolic subgroups of the classical groups.Mem. Amer. Math. Soc., vol. 8, American Mathematical Society, Providence, 1976. Zbl 0344.22016, MR 0444847
.

Files

Files Size Format View
ArchMathRetro_052-2016-5_5.pdf 536.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo