Full entry |
PDF
(0.3 MB)
Feedback

Mendelsohn design; quasigroup; $(2,q)$-variety; t-design

References:

[1] Brand N., Huffman W.C.: **Invariants and constructions of Mendelsohn designs**. Geom. Dedicata 22 (1987), 173–196. DOI 10.1007/BF00181265 | MR 0877209 | Zbl 0649.05014

[2] Brand N., Huffman W.C.: **Mendelsohn designs admitting the affine group**. Graphs Combin. 3 (1987), 313–324. DOI 10.1007/BF01788554 | MR 0914832 | Zbl 0659.05022

[3] Colbourn C.J., Dinitz J.H. (editors): **The CRC Handbook of Combinatorial Designs**. CRCPress, Boca Raton, 1996. MR 1392993

[4] Ganter B., Werner H.: **Equational classes of Steiner systems**. Algebra Universalis 5 (1975), 125–140. DOI 10.1007/BF02485242 | MR 0404103 | Zbl 0327.08007

[5] Goračinova-Ilieva L.: **$(k,n)$-Algebras, quasigroups and designs**. Ph.D. Thesis, UKIM, Skopje, 2007.

[6] Goračinova-Ilieva L., Markovski S.: **Constructions of $(2,n)$-varieties of groupoids for $n=7,8,9$**. Publ. Inst. Math. (Beograd) (N.S.) 81(95) (2007), 111–117. DOI 10.2298/PIM0795111G | MR 2401320

[7] Grätzer G.: **A theorem of doubly transitive permutation groups with application to universal algebras**. Fund. Math. 53 (1964), no. 1, 25–41. DOI 10.4064/fm-53-1-25-41 | MR 0156809

[8] Mendelsohn N.S.: **Combinatorial designs as models of universal algebras**. in Recent Progress in Combinatorics (Proceedings of the Third Waterloo Conference on Combinatorics, May 1968), edited by W.T. Tuttle, Academic Press, New York, 1969, pp. 123–132. MR 0255423 | Zbl 0192.33302

[9] Mendelsohn N.S.: **Perfect cyclic designs**. Discrete Math. 20 (1977), 63–68. DOI 10.1016/0012-365X(77)90043-7 | MR 0480106 | Zbl 0444.05021

[10] Padmanabhan R.: **Characterization of a class of groupoids**. Algebra Universalis 1 (1972), 374–382. DOI 10.1007/BF02944996 | MR 0294550 | Zbl 0236.20043

[11] Zhang X.: **Nilpotent algebras with maximal class in congruence modular varieties**. Ph.D. Thesis, University of Manitoba, 1998. MR 2698338