Previous |  Up |  Next

Article

Keywords:
symmetric group; group algebra; Young diagrams; standard tableaux; idempotents; matrix units; two-sided ideals; Wedderburn decomposition; representation theory; Clifton's algorithm; computer algebra; polynomial identities; nonassociative algebra; octonions
Summary:
This is a survey paper on applications of the representation theory of the symmetric group to the theory of polynomial identities for associative and nonassociative algebras. In §1, we present a detailed review (with complete proofs) of the classical structure theory of the group algebra $\mathbb{F} S_n$ of the symmetric group $S_n$ over a field $\mathbb{F}$ of characteristic 0 (or $p > n$). The goal is to obtain a constructive version of the isomorphism $\psi\colon \bigoplus_\lambda M_{d_\lambda} (\mathbb{F}) \longrightarrow \mathbb{F} S_n$ where $\lambda$ is a partition of $n$ and $d_\lambda$ counts the standard tableaux of shape $\lambda$. Young showed how to compute $\psi$; to compute its inverse, we use an efficient algorithm for representation matrices discovered by Clifton. In §2, we discuss constructive methods based on §1 which allow us to analyze the polynomial identities satisfied by a specific (non)associative algebra: fill and reduce algorithm, module generators algorithm, Bondari's algorithm for finite dimensional algebras. In §3, we study the multilinear identities satisfied by the octonion algebra $\mathbb{O}$ over a field of characteristic 0. For $n \le 6$ we compare our computational results with earlier work of Racine, Hentzel \&\ Peresi, Shestakov \&\ Zhukavets. Going one step further, we verify computationally that every identity in degree 7 is a consequence of known identities of lower degree; this result is our main original contribution. This gap (no new identities in degree 7) motivates our concluding conjecture: the known identities for $n \le 6$ generate all of the octonion identities in characteristic 0.
References:
[1] Amitsur A., Levitzki J.: Minimal identities for algebras. Proc. Amer. Math. Soc. 1 (1950), 449–463. DOI 10.1090/S0002-9939-1950-0036751-9 | MR 0036751 | Zbl 0043.03702
[2] Benanti F., Demmel J., Drensky V., Koev P.: Computational approach to polynomial identities of matrices---a survey. Polynomial Identities and Combinatorial Methods (Pantelleria, 2001), 141–178, Lecture Notes in Pure and Appl. Math., 235, Dekker, New York, 2003. MR 2021797 | Zbl 1067.16041
[3] Bergdolt G.: Tilted irreducible representations of the permutation group. Comput. Phys. Comm. 86 (1995), no. 1–2, 97–104. DOI 10.1016/0010-4655(95)00009-5 | MR 1327568 | Zbl 0873.20013
[4] Boerner H.: Representations of Groups. With Special Consideration for the Needs of Modern Physics. (second English edition), North-Holland Publishing Co., Amsterdam-London, American Elsevier Publishing Co., Inc., New York, 1970. MR 0272911 | Zbl 0167.02601
[5] Bondari S.: Constructing the Identities and the Central Identities of Degree $< 9$ of the $n \times n$ Matrices. Ph.D. Thesis, Iowa State University, 1993. http://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=11403&context=rtd
[6] Bondari S.: Constructing the polynomial identities and central identities of degree $< 9$ of $3 \times 3$ matrices. Linear Algebra Appl. 258 (1997), 233–249. MR 1444106 | Zbl 0884.15009
[7] Bremner M.: Lattice Basis Reduction: An Introduction to the LLL Algorithm and Its Applications. Pure and Applied Mathematics, 300, CRC Press, Boca Raton, 2012. MR 2829731 | Zbl 1237.68007
[8] Bremner M., Dotsenko V.: Algebraic Operads: An Algorithmic Companion. Chapman and Hall/CRC, Boca Raton, 2016. Zbl 1350.18001
[9] Bremner M., Hentzel I.: Identities for the associator in alternative algebras. J. Symbolic Comput. 33 (2002), no. 3, 255–273. DOI 10.1006/jsco.2001.0510 | MR 1882229 | Zbl 0997.17021
[10] Bremner M., Murakami L., Shestakov I.: Nonassociative algebras. Chapter 69 of Handbook of Linear Algebra, edited by Leslie Hogben, Chapman & Hall/CRC, Boca Raton, 2007. MR 2279160
[11] Bremner M., Peresi L.: Nonhomogeneous subalgebras of Lie and special Jordan superalgebras. J. Algebra 322 (2009), no. 6, 2000–2026. DOI 10.1016/j.jalgebra.2009.06.014 | MR 2542829 | Zbl 1196.17025
[12] Bremner M., Peresi L.: An application of lattice basis reduction to polynomial identities for algebraic structures. Linear Algebra Appl. 430 (2009), no. 2–3, 642–659. MR 2469318 | Zbl 1173.17001
[13] Bremner M., Peresi L.: Special identities for quasi-Jordan algebras. Comm. Algebra 39 (2011), no. 7, 2313–2337. DOI 10.1080/00927872.2010.488671 | MR 2821713 | Zbl 1241.17032
[14] Clifton J.: Complete sets of orthogonal tableaux. Ph.D. Thesis, Iowa State University, 1980; http://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=7688&context=rtd MR 2630923
[15] Clifton J.: A simplification of the computation of the natural representation of the symmetric group $S_n$. Proc. Amer. Math. Soc. 83 (1981), no. 2, 248–250. MR 0624907 | Zbl 0443.20013
[16] Dehn M.: Über die Grundlagen der projektiven Geometrie und allgemeine Zahlsysteme. Math. Ann. 85 (1922), no. 1, 184–194. DOI 10.1007/BF01449618 | MR 1512061
[17] Filippov V., Kharchenko V., Shestakov I. (editors): Dniester Notebook: Unsolved Problems in the Theory of Rings and Modules. Nonassociative Algebra and its Applications, 461–516, Lect. Notes Pure Appl. Math., 246, Chapman & Hall/CRC, Boca Raton, 2006; translated by Murray Bremner and Mikhail Kotchetov. http://math.usask.ca/ bremner/research/publications/dniester.pdf. MR 2203726
[18] Drensky V.: A minimal basis for identities of a second-order matrix algebra over a field of characteristic 0. Algebra Logic 20 (1981), no. 3, 188–194. DOI 10.1007/BF01669018 | MR 0648317
[19] Drensky V., Kasparian A.: Polynomial identities of eighth degree for $3 \times 3$ matrices. Annuaire Univ. Sofia Fac. Math. Méc. 77 (1983), no. 1, 175–195. MR 0960570 | Zbl 0736.16012
[20] Henry F.: Some graded identities of the Cayley-Dickson algebra. arxiv.org/abs/1205.5057, (submitted on 22 May 2012).
[21] Hentzel I.: Processing identities by group representation. Computers in Nonassociative Rings and Algebras, (Special Session, 82nd Annual Meeting, Amer. Math. Soc., San Antonio, Tex., 1976), pages 13–40, Academic Press, New York, 1977. MR 0463251
[22] Hentzel I.: Applying group representation to nonassociative algebras. Ring Theory (Proc. Conf., Ohio Univ., Athens, Ohio, 1976), 133–141, Lecture Notes in Pure and Appl. Math., 25, Dekker, New York, 1977. MR 0435159 | Zbl 0356.17002
[23] Hentzel I., Juriaans S., Peresi L.: Polynomial identities of RA and RA2 loop algebras. Comm. Algebra 35 (2007), no. 2, 589–595. DOI 10.1080/00927870601074822 | MR 2294618 | Zbl 1132.20043
[24] Hentzel I., Peresi L.: Identities of Cayley-Dickson algebras. J. Algebra 188 (1997), no. 1, 292–309. DOI 10.1006/jabr.1996.6814 | MR 1432358 | Zbl 0890.17001
[25] Iltyakov A.: The Specht property of ideals of identities of certain simple nonassociative algebras. Algebra Logic 24 (1985), no. 3, 210–228. DOI 10.1007/BF02080333
[26] Iltyakov A.: Finiteness of the basis of identities of a finitely generated alternative PI-algebra over a field of characteristic zero. Siberian Math. J. 32 (1991), no. 6, 948–961. DOI 10.1007/BF00971199 | Zbl 0749.17043
[27] Iltyakov A.: On finite basis of identities of Lie algebra representations. Nova J. Algebra Geom. 1 (1992), no. 3, 207–259. MR 1218354 | Zbl 0892.17007
[28] Isaev I.: Identities of a finite Cayley-Dickson algebra. Algebra Logic 23 (1984), no. 4, 407–418. DOI 10.1007/BF02071788 | MR 0781248 | Zbl 0598.17013
[29] Jacobson N.: Structure theory for algebraic algebras of bounded degree. Ann. of Math. (2) 46 (1945), 695–707. DOI 10.2307/1969205 | MR 0014083
[30] Juriaans S., Peresi L.: Polynomial identities of RA2 loop algebras. J. Algebra, 213 (1999), no. 2, 557–566. DOI 10.1006/jabr.1998.7675 | MR 1673469 | Zbl 0923.17004
[31] Kaplansky I.: Rings with a polynomial identity. Bull. Amer. Math. Soc. 54 (1948), 575–580. DOI 10.1090/S0002-9904-1948-09049-8 | MR 0025451 | Zbl 0032.00701
[32] Kemer A.: Finite basability of identities of associative algebras. Algebra Logic 26 (1987), no. 5, 362–397. DOI 10.1007/BF01978692 | MR 0985840
[33] Kemer A.: Ideals of Identities of Associative Algebras. Translations of Mathematical Monographs, 87, American Mathematical Society, Providence, 1991. MR 1108620 | Zbl 0732.16001
[34] Kleinfeld E.: Simple alternative rings. Ann. of Math. 58 (1953), no. 2, 544–547. DOI 10.2307/1969753 | MR 0058581 | Zbl 0066.28402
[35] Knuth D.: The Art of Computer Programming. vol. 3: Sorting and Searching, (second edition), Addison-Wesley, Reading, 1998. MR 3077154 | Zbl 1178.68372
[36] Koshlukov P.: Algebras with polynomial identities. 15th School of Algebra, Canela, Brazil, 1998. Mat. Contemp. 16 (1999), 137–186. MR 1756833 | Zbl 0976.16019
[37] Leron U.: Multilinear identities of the matrix ring. Trans. Amer. Math. Soc. 183 (1973), 175–202. DOI 10.1090/S0002-9947-1973-0332873-3 | MR 0332873 | Zbl 0278.16011
[38] Malcev A.: On algebras defined by identities. Mat. Sbornik N.S. 26(68) (1950), 19–33. MR 0033280
[39] Novelli J., Pak I., Stoyanovskii A.: A direct bijective proof of the hook-length formula. Discrete Math. Theor. Comput. Sci. 1 (1997) no. 1, 53–67. MR 1605030 | Zbl 0934.05125
[40] Racine M.: Minimal identities for Jordan algebras of degree 2. Comm. Algebra 13 (1985), no. 12, 2493–2506. DOI 10.1080/00927878508823287 | MR 0811520 | Zbl 0579.17014
[41] Racine M.: Minimal identities of octonion algebras. J. Algebra 115 (1988), no. 1, 251–260. DOI 10.1016/0021-8693(88)90294-3 | MR 0937613 | Zbl 0651.17012
[42] Razmyslov Y.: Identities of Algebras and Their Representations. Translations of Mathematical Monographs, 138, American Mathematical Society, Providence, 1994. MR 1291603 | Zbl 0827.17001
[43] Regev A.: The representations of $S_n$ and explicit identities for P.I. algebras. J. Algebra 51 (1978), no. 1, 25–40. DOI 10.1016/0021-8693(78)90133-3 | MR 0469965 | Zbl 0374.16009
[44] Regev A.: On the Codimensions of Matrix Algebras. Algebra --- Some Current Trends, Varna, 1986, 162–172, Lecture Notes in Math., 1352, Springer, Berlin, 1988. MR 0981825 | Zbl 0676.16016
[45] Rutherford D.: Substitutional Analysis. Edinburgh, at the University Press, 1948. MR 0027272 | Zbl 0174.31202
[46] Shestakov I.: Associative identities of octonions. Algebra Logic 49 (2011), no. 6, 561–565. DOI 10.1007/s10469-011-9118-9 | MR 2829611 | Zbl 1248.17002
[47] Shestakov I., N. Zhukavets: Skew-symmetric identities of octonions. J. Pure Appl. Algebra 213 (2009), no. 4, 479–492. DOI 10.1016/j.jpaa.2008.07.012 | MR 2483833 | Zbl 1241.17033
[48] Specht W.: Gesetze in Ringen I. Math. Z. 52 (1950), 557–589. MR 0035274 | Zbl 0032.38901
[49] Vaĭs A., Zel'manov E.: Kemer's theorem for finitely generated Jordan algebras. Soviet Math. (Iz. VUZ) 33 (1989), no. 6, 38–47. MR 1017777
[50] van der Waerden B.: Algebra, Vol. II. Based in part on lectures by E. Artin and E. Noether, Springer, New York, 1991. MR 1080173
[51] Wagner W.: Über die Grundlagen der projektiven Geometrie und allgemeine Zahlensysteme. Math. Ann. 113 (1937), no. 1, 528–567. DOI 10.1007/BF01571649 | MR 1513106 | Zbl 0015.17002
[52] Young A.: The Collected Papers of Alfred Young (1873–1940). With a foreword by G. de B. Robinson and a biography by H.W. Turnbull, Mathematical Expositions, 21, University of Toronto Press, Toronto, Ont., Buffalo, N.Y., 1977. MR 0439548
[53] Zhevlakov K., Slin'ko A., Shestakov I., Shirshov A.: Rings That Are Nearly Associative. Pure and Applied Mathematics, 104, Academic Press, Inc., New York-London, 1982; translated by Harry F. Smith. MR 0668355 | Zbl 0487.17001
Partner of
EuDML logo