Previous |  Up |  Next

Article

Title: Some relations on Humbert matrix polynomials (English)
Author: Shehata, Ayman
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 141
Issue: 4
Year: 2016
Pages: 407-429
Summary lang: English
.
Category: math
.
Summary: The Humbert matrix polynomials were first studied by Khammash and Shehata (2012). Our goal is to derive some of their basic relations involving the Humbert matrix polynomials and then study several generating matrix functions, hypergeometric matrix representations, matrix differential equation and expansions in series of some relatively more familiar matrix polynomials of Legendre, Gegenbauer, Hermite, Laguerre and modified Laguerre. Finally, some definitions of generalized Humbert matrix polynomials also of two, three and several index are derived. (English)
Keyword: hypergeometric matrix function
Keyword: Humbert matrix polynomials
Keyword: matrix functional calculus
Keyword: generating matrix function
Keyword: matrix differential equation
MSC: 15A60
MSC: 33C45
MSC: 33C55
MSC: 33E20
idZBL: Zbl 06674853
idMR: MR3576790
DOI: 10.21136/MB.2016.0019-14
.
Date available: 2017-01-03T15:11:32Z
Last updated: 2020-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/145954
.
Reference: [1] Aktaş, R.: A new multivariable extension of Humbert matrix polynomials.AIP Publishing LLC Rhodes, Greece AIP Conference Proceedings 1558: Proc. Int. Conf. on Numerical Analysis and Applied Mathematics (2013), 1128-1131 T. Simos et al. \DOI 10.1063/1.4825706. 10.1063/1.4825706
Reference: [2] Aktaş, R.: A note on multivariable Humbert matrix polynomials.Gazi Univ. J. Sci. 27 (2014), 747-754.
Reference: [3] Aktaş, R., Çekim, B., Çevik, A.: Extended Jacobi matrix polynomials.Util. Math. 92 (2013), 47-64. MR 3136666
Reference: [4] Aktaş, R., Çekim, B., Şahin, R.: The matrix version for the multivariable Humbert polynomials.Miskolc Math. Notes 13 (2012), 197-208. Zbl 1274.33009, MR 3002623, 10.18514/MMN.2012.356
Reference: [5] Altın, A., Çekim, B.: Generating matrix functions for Chebyshev matrix polynomials of the second kind.Hacet. J. Math. Stat. 41 (2012), 25-32. Zbl 1259.33014, MR 2976908
Reference: [6] Altın, A., Çekim, B.: Some properties associated with Hermite matrix polynomials.Util. Math. 88 (2012), 171-181. Zbl 1262.15023, MR 2975830
Reference: [7] Altın, A., Çekim, B.: Some miscellaneous properties for Gegenbauer matrix polynomials.Util. Math. 92 (2013), 377-387. Zbl 1293.33007, MR 3136694
Reference: [8] Çekim, B., Altın, A., Aktaş, R.: Some relations satisfied by orthogonal matrix polynomials.Hacet. J. Math. Stat. 40 (2011), 241-253. Zbl 1229.33012, MR 2839191
Reference: [9] Çekim, B., Altın, A., Aktaş, R.: Some new results for Jacobi matrix polynomials.Filomat 27 (2013), 713-719. MR 3243979, 10.2298/FIL1304713C
Reference: [10] Defez, E., Jódar, L.: Some applications of the Hermite matrix polynomials series expansions.J. Comput. Appl. Math. 99 (1998), 105-117. Zbl 0929.33006, MR 1662687, 10.1016/S0377-0427(98)00149-6
Reference: [11] Defez, E., Jódar, L.: Chebyshev matrix polynomials and second order matrix differential equations.Util. Math. 61 (2002), 107-123. Zbl 0998.15034, MR 1899321
Reference: [12] Defez, E., Jódar, L., Law, A.: Jacobi matrix differential equation, polynomial solutions, and their properties.Comput. Math. Appl. 48 (2004), 789-803. Zbl 1069.33007, MR 2105252, 10.1016/j.camwa.2004.01.011
Reference: [13] Dunford, N., Schwartz, J. T.: Linear Operators. Part I, General Theory.Pure and Applied Mathematics 7 A Wiley-Interscience Publishers, John Wiley & Sons, New York (1958). MR 1009162
Reference: [14] James, A. T.: Special functions of matrix and single argument in statistics.Theory and Application of Special Functions, Proc. Advanced Sem., Math. Res. Center, Madison, Wis. R. A. Askey Academic Press, New York (1975), 497-520. Zbl 0326.33010, MR 0402145
Reference: [15] Jódar, L., Company, R.: Hermite matrix polynomials and second order matrix differential equations.Approximation Theory Appl. 12 (1996), 20-30. MR 1465570
Reference: [16] Jódar, L., Company, R., Ponsoda, E.: Orthogonal matrix polynomials and systems of second order differential equations.Differ. Equ. Dyn. Syst. 3 (1995), 269-288. Zbl 0892.33004, MR 1386749
Reference: [17] Jódar, L., Cortés, J. C.: On the hypergeometric matrix function.J. Comput. Appl. Math. 99 (1998), 205-217. Zbl 0933.33004, MR 1662696, 10.1016/S0377-0427(98)00158-7
Reference: [18] Jódar, L., Cortés, J. C.: Closed form general solution of the hypergeometric matrix differential equation.Math. Comput. Modelling 32 (2000), 1017-1028. Zbl 0985.33006, MR 1799616, 10.1016/S0895-7177(00)00187-4
Reference: [19] Jódar, L., Defez, E.: On Hermite matrix polynomials and Hermite matrix functions.Approximation Theory Appl. 14 (1998), 36-48. MR 1651470
Reference: [20] Jódar, L., Sastre, J.: On Laguerre matrix polynomials.Util. Math. 53 (1998), 37-48. Zbl 0990.33008, MR 1622055
Reference: [21] Kargin, L., Kurt, V.: Some relations on Hermite matrix polynomials.Math. Comput. Appl. 18 (2013), 323-329. MR 3113139
Reference: [22] Khammash, G. S., Shehata, A.: On Humbert matrix polynomials.Asian J. Current Eng. Maths. 1 (2012), 232-240 http://innovativejournal.in/index.php/ajcem/article/view/104/96.
Reference: [23] Khan, S., Hassan, N. A. Makboul: 2-variable Laguerre matrix polynomials and Lie-algebraic techniques.J. Phys. A, Math. Theor. 43 (2010), Article ID 235204, 21 pages. MR 2646680, 10.1088/1751-8113/43/23/235204
Reference: [24] Metwally, M. S., Mohamed, M. T., Shehata, A.: On Hermite-Hermite matrix polynomials.Math. Bohem. 133 (2008), 421-434. Zbl 1199.15079, MR 2472489
Reference: [25] Sastre, J., Jódar, L.: On Laguerre matrix polynomial series.Util. Math. 71 (2006), 109-130. Zbl 1106.33011, MR 2278826
Reference: [26] Shehata, A.: On Tricomi and Hermite-Tricomi matrix functions of complex variable.Commun. Math. Appl. 2 (2011), 97-109. Zbl 1266.33012, MR 3000027
Reference: [27] Shehata, A.: A new extension of Gegenbauer matrix polynomials and their properties.Bull. Int. Math. Virtual Inst. 2 (2012), 29-42. MR 3149829
Reference: [28] Shehata, A.: On pseudo Legendre matrix polynomials.Int. J. Math. Sci. Eng. Appl. 6 (2012), 251-258. MR 3057762
Reference: [29] Shehata, A.: On Rainville's matrix polynomials.Sylwan J. 158 (2014), 158-178. MR 3248615
Reference: [30] Shehata, A.: On Rice's matrix polynomials.Afr. Mat. 25 (2014), 757-777. Zbl 1321.15041, MR 3248615, 10.1007/s13370-013-0149-3
Reference: [31] Shehata, A.: New kinds of hypergeometric matrix functions.British Journal of Mathematics and Computer Science 5 (2015), 92-102 \DOI 10.9734/BJMCS/2015/11492. 10.9734/BJMCS/2015/11492
Reference: [32] Shehata, A.: On a new family of the extended generalized Bessel-type matrix polynomials.Mitteilungen Klosterneuburg J. 65 (2015), 100-121.
Reference: [33] Shehata, A.: On modified Laguerre matrix polynomials.J. Nat. Sci. Math. 8 (2015), 153-166. MR 3404349
Reference: [34] Taşdelen, F., Çekim, B., Aktaş, R.: On a multivariable extension of Jacobi matrix polynomials.Comput. Math. Appl. 61 (2011), 2412-2423. Zbl 1221.33022, MR 2794989, 10.1016/j.camwa.2011.02.019
Reference: [35] Upadhyaya, L. M., Shehata, A.: On Legendre matrix polynomials and its applications.Int. Trans. Math. Sci. Comput. 4 (2011), 291-310. MR 3057762
Reference: [36] Upadhyaya, L. M., Shehata, A.: A new extension of generalized Hermite matrix polynomials.Bull. Malays. Math. Sci. Soc. (2) 38 (2015), 165-179. Zbl 1311.33008, MR 3394046, 10.1007/s40840-014-0010-3
Reference: [37] Varma, S., Çekim, B., Yeşildal, F. Taşdelen: On Konhauser matrix polynomials.Ars Comb. 100 (2011), 193-204. MR 2798172
Reference: [38] Varma, S., Taşdelen, F.: Biorthogonal matrix polynomials related to Jacobi matrix polynomials.Comput. Math. Appl. 62 (2011), 3663-3668. Zbl 1236.15048, MR 2852088, 10.1016/j.camwa.2011.08.063
.

Files

Files Size Format View
MathBohem_141-2016-4_1.pdf 301.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo