Previous |  Up |  Next

Article

Title: On the preservation of Baire and weakly Baire category (English)
Author: Mirmostafaee, Alireza Kamel
Author: Piotrowski, Zbigniew
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 141
Issue: 4
Year: 2016
Pages: 475-481
Summary lang: English
.
Category: math
.
Summary: We consider the question of preservation of Baire and weakly Baire category under images and preimages of certain kind of functions. It is known that Baire category is preserved under image of quasi-continuous feebly open surjections. In order to extend this result, we introduce a strictly larger class of quasi-continuous functions, i.e. the class of quasi-interior continuous functions. We show that Baire and weakly Baire categories are preserved under image of feebly open quasi-interior continuous surjections. We also give a new definition for countably fiber-completeness of a function. We prove that Baire category is preserved under inverse image of a countably fiber-complete function provided that it is feebly open and feebly continuous. (English)
Keyword: feebly continuous mapping
Keyword: quasi-interior continuity
Keyword: Baire space
Keyword: weakly Baire space
Keyword: fiber-completeness
MSC: 54C10
MSC: 54E52
idZBL: Zbl 06674857
idMR: MR3576794
DOI: 10.21136/MB.2016.0053-15
.
Date available: 2017-01-03T15:16:29Z
Last updated: 2020-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/145958
.
Reference: [1] Beer, G., Villar, L.: Weakly Baire spaces.Southeast Asian Bull. Math. 11 (1988), 127-133. Zbl 0665.54019, MR 0958315
Reference: [2] Bourbaki, N.: Topologie Générale -- Chapitre 9: Utilisation des Nombres Réels en Topologie Générale.Éléments de Mathématique I: Les Structures Fondamentales de L'analyse -- Livre III Actualités Scientifiques et Industrielles, No. 1045 Hermann & Cie, Paris French (1948). MR 0027138
Reference: [3] Cao, J., Moors, W. B.: A survey on topological games and their applications in analysis.RACSAM, Rev. R. Acad. Cienc. Exactas Fí s. Nat. Ser. A Mat. 100 (2006), 39-49. Zbl 1114.91024, MR 2267399
Reference: [4] Choquet, G.: Lectures on Analysis, vol. 1: Integration and Topological Vector Spaces.Mathematics Lecture Note Series W. A. Benjamin, New York-Amsterdam (1969). Zbl 0181.39601, MR 0250011
Reference: [5] Dobo{š}, J.: A note on the invariance of Baire spaces under mappings.Časopis Pěst. Mat. 108 (1983), 409-411. Zbl 0535.54005, MR 0727538
Reference: [6] Doboš, J., Piotrowski, Z., Reilly, I. L.: Preimages of Baire spaces.Math. Bohem. 119 (1994), 373-379. Zbl 0815.54010, MR 1316589
Reference: [7] Fleissner, W. G., Kunen, K.: Barely Baire spaces.Fundam. Math. 101 (1978), 229-240. Zbl 0413.54036, MR 0521125, 10.4064/fm-101-3-229-240
Reference: [8] Frol{í}k, Z.: Baire spaces and some generalizations of complete metric spaces.Czech. Math. J. 11 (1961), 237-248. Zbl 0149.40302, MR 0124870
Reference: [9] Frol{í}k, Z.: Remarks concerning the invariance of Baire spaces under mappings.Czech. Math. J. 11 (1961), 381-385. Zbl 0104.17204, MR 0133098
Reference: [10] Mirmostafaee, A. K.: Continuity of separately continuous mappings.Math. Slovaca 64 (2014), 1019-1026. Zbl 1349.54034, MR 3255869, 10.2478/s12175-014-0255-1
Reference: [11] Moors, W. B.: The product of a Baire space with a hereditarily Baire metric space is Baire.Proc. Am. Math. Soc. 134 (2006), 2161-2163. Zbl 1093.54008, MR 2215788, 10.1090/S0002-9939-06-08389-4
Reference: [12] Neubrunn, T.: A note on mappings of Baire spaces.Math. Slovaca 27 (1977), 173-176 correction in 442 (1977). Zbl 0371.54023, MR 0454910
Reference: [13] Noll, D.: On the preservation of Baire category under preimages.Proc. Am. Math. Soc. 107 (1989), 847-854. Zbl 0687.54012, MR 0982407, 10.1090/S0002-9939-1989-0982407-2
Reference: [14] Oxtoby, J. C.: Cartesian products of Baire spaces.Fundam. Math. 49 (1961), 157-166. Zbl 0113.16402, MR 0140638, 10.4064/fm-49-2-157-166
Reference: [15] Oxtoby, J. C.: Measure and Category---A Survey of the Analogies between Topological and Measure Spaces.Graduate Texts in Mathematics. Vol. 2 Springer, New York (1971). Zbl 0217.09201, MR 0393403
Reference: [16] Piotrowski, Z., Reilly, I. L.: Preimages of Baire spaces---an example.Quest. Answers Gen. Topology 11 (1993), 105-107. Zbl 0779.54025, MR 1205956
Reference: [17] Rose, D. A., Jankovi{ć}, D. S., Hamlett, T. R.: On weakly Baire spaces.Southeast Asian Bull. Math. 15 (1991), 183-190. Zbl 0747.54008, MR 1145440
Reference: [18] Rudin, W.: Functional Analysis.International Series in Pure and Applied Mathematics McGraw-Hill, New York (1991). Zbl 0867.46001, MR 1157815
Reference: [19] Sikorski, R.: On the Cartesian product of metric spaces.Fundam. Math. 34 (1947), 288-292. Zbl 0041.31701, MR 0025542, 10.4064/fm-34-1-288-292
.

Files

Files Size Format View
MathBohem_141-2016-4_5.pdf 225.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo