Title:
|
Cardinalities of DCCC normal spaces with a rank 2-diagonal (English) |
Author:
|
Xuan, Wei-Feng |
Author:
|
Shi, Wei-Xue |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
141 |
Issue:
|
4 |
Year:
|
2016 |
Pages:
|
457-461 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
A topological space $X$ has a rank 2-diagonal if there exists a diagonal sequence on $X$ of rank $2$, that is, there is a countable family $\{\mathcal U_n\colon n\in \omega \}$ of open covers of $X$ such that for each $x \in X$, $\{x\}=\bigcap \{{\rm St}^2(x, \mathcal U_n)\colon n \in \omega \}$. We say that a space $X$ satisfies the Discrete Countable Chain Condition (DCCC for short) if every discrete family of nonempty open subsets of $X$ is countable. We mainly prove that if $X$ is a DCCC normal space with a rank 2-diagonal, then the cardinality of $X$ is at most $\mathfrak c$. Moreover, we prove that if $X$ is a first countable DCCC normal space and has a $G_\delta $-diagonal, then the cardinality of $X$ is at most $\mathfrak c$. (English) |
Keyword:
|
cardinality |
Keyword:
|
Discrete Countable Chain Condition |
Keyword:
|
normal space |
Keyword:
|
rank 2-diagonal |
Keyword:
|
$G_\delta $-diagonal |
MSC:
|
54D20 |
MSC:
|
54E35 |
idZBL:
|
Zbl 06674855 |
idMR:
|
MR3576792 |
DOI:
|
10.21136/MB.2016.0027-15 |
. |
Date available:
|
2017-01-03T15:13:44Z |
Last updated:
|
2020-07-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/145960 |
. |
Reference:
|
[1] Arhangel'skii, A. V., Buzyakova, R. Z.: The rank of the diagonal and submetrizability.Commentat. Math. Univ. Carol. 47 (2006), 585-597. Zbl 1150.54335, MR 2337413 |
Reference:
|
[2] Buzyakova, R. Z.: Cardinalities of ccc-spaces with regular $G_\delta$-diagonals.Topology Appl. 153 (2006), 1696-1698. Zbl 1094.54001, MR 2227022, 10.1016/j.topol.2005.06.004 |
Reference:
|
[3] Engelking, R.: General Topology.Sigma Series in Pure Mathematics 6 Heldermann, Berlin (1989). Zbl 0684.54001, MR 1039321 |
Reference:
|
[4] Ginsburg, J., Woods, R. G.: A cardinal inequality for topological spaces involving closed discrete sets.Proc. Am. Math. Soc. 64 (1977), 357-360. Zbl 0398.54002, MR 0461407, 10.1090/S0002-9939-1977-0461407-7 |
Reference:
|
[5] Hodel, R.: Cardinal functions I.Handbook of Set-Theoretic Topology North-Holland VII, Amsterdam K. Kunen et al. 1-61 North-Holland, Amsterdam (1984). Zbl 0559.54003, MR 0776620 |
Reference:
|
[6] Matveev, M.: A survey on star covering properties.Topology Atlas (1998), http://at.yorku.ca/v/a/a/a/19.htm. |
Reference:
|
[7] Shakhmatov, D. B.: No upper bound for cardinalities of Tychonoff C.C.C. spaces with a $G_\delta $-diagonal exists.Commentat. Math. Univ. Carol. 25 (1984), 731-746. MR 0782022 |
Reference:
|
[8] Uspenskij, V. V.: A large $F_\sigma$-discrete Frechet space having the Souslin property.Commentat. Math. Univ. Carol. 25 (1984), 257-260. MR 0768812 |
Reference:
|
[9] Wiscamb, M. R.: The discrete countable chain condition.Proc. Am. Math. Soc. 23 (1969), 608-612. Zbl 0184.26304, MR 0248744, 10.1090/S0002-9939-1969-0248744-1 |
Reference:
|
[10] Xuan, W. F., Shi, W. X.: A note on spaces with a rank 3-diagonal.Bull. Aust. Math. Soc. 90 (2014), 521-524. Zbl 1305.54036, MR 3270766, 10.1017/S0004972714000318 |
Reference:
|
[11] Xuan, W. F., Shi, W. X.: A note on spaces with a rank 2-diagonal.Bull. Aust. Math. Soc. 90 (2014), 141-143. MR 3227139, 10.1017/S0004972713001184 |
. |