Title:
|
Proving the characterization of Archimedean copulas via Dini derivatives (English) |
Author:
|
Fernández-Sánchez, Juan |
Author:
|
Úbeda-Flores, Manuel |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 (print) |
ISSN:
|
1805-949X (online) |
Volume:
|
52 |
Issue:
|
5 |
Year:
|
2016 |
Pages:
|
785-790 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this note we prove the characterization of the class of Archimedean copulas by using Dini derivatives. (English) |
Keyword:
|
Archimedean copula |
Keyword:
|
derived number |
Keyword:
|
Dini derivative |
MSC:
|
60E05 |
MSC:
|
62E10 |
idZBL:
|
Zbl 06674939 |
idMR:
|
MR3602015 |
DOI:
|
10.14736/kyb-2016-5-0785 |
. |
Date available:
|
2017-01-02T13:30:29Z |
Last updated:
|
2018-01-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/145968 |
. |
Reference:
|
[1] Alsina, C., Frank, M. J., Schweizer, B.: Associative Functions: Triangular Norms and Copulas..World Scientific, Singapore 2006. Zbl 1100.39023, MR 2222258, 10.1142/9789812774200 |
Reference:
|
[2] Amo, E. de, Carrillo, M. Díaz, Sánchez, J. Fernández: Characterization of all copulas associated with non-continuous random variables..Fuzzy Sets Syst. 191 (2012), 103-112. MR 2874826, 10.1016/j.fss.2011.10.005 |
Reference:
|
[3] Berg, L., Krüppel, M.: De Rahm's singular function and related functions..Z. Anal. Anw. 19 (2000), 227-237. MR 1748045, 10.4171/zaa/947 |
Reference:
|
[4] Cherubini, U., Luciano, E., Vecchiato, W.: Copula Methods in Finance..Wiley Finance Series, John Wiley and Sons Ltd., Chichester 2004. Zbl 1163.62081, MR 2250804, 10.1002/9781118673331 |
Reference:
|
[5] Durante, F., Jaworski, P.: A new characterization of bivariate copulas..Comm. Statist. Theory Methods 39 (2010), 2901-2912. Zbl 1203.62101, MR 2755533, 10.1080/03610920903151459 |
Reference:
|
[6] Durante, F., Sempi, C.: Principles of Copula Theory..Chapman and Hall/CRC, London 2015. MR 3443023, 10.1201/b18674 |
Reference:
|
[7] Genest, C., MacKay, J.: Copules archimédiennes et familles de lois bidimensionnelles dont les marges sont données..Canad. J. Statist. 14 (1986), 145-159. Zbl 0605.62049, MR 0849869, 10.2307/3314660 |
Reference:
|
[8] Hagood, J. W., Thomson, B. S.: Recovering a function from a Dini derivative..Amer. Math. Monthly 113 (2006), 34-46. Zbl 1132.26321, MR 2202919, 10.2307/27641835 |
Reference:
|
[9] Jaworski, P., Durante, F., Härdle, W., (editors), T. Rychlik: Copula Theory and its Applications..Lecture Notes in Statistics-Proceedings, Springer, Berlin-Heidelberg 2010. MR 3075361, 10.1007/978-3-642-12465-5 |
Reference:
|
[10] Ling, C. H.: Representation of associative functions..Publ. Math. Debrecen 12 (1965), 189-212. Zbl 0137.26401, MR 0190575 |
Reference:
|
[11] Łojasiewicz, S.: An Introduction to the Theory of Real Functions. Third Edition..A Wiley-Interscience Publication, John Wiley and Sons Ltd., Chichester 1988. MR 0952856 |
Reference:
|
[12] McNeil, A. J., Nešlehová, J.: Multivariate Archimedean copulas, $d$-monotone functions and $l_1$-norm symmetric distributions..Ann. Stat. 37 (2009), 3059-3097. MR 2541455, 10.1214/07-aos556 |
Reference:
|
[13] McNeil, A. J., Frey, R., Embrechts, P.: Quantitative Risk Management: Concepts, Techniques, and Tools..Princeton University Press, Princeton 2005. Zbl 1347.00025, MR 2175089 |
Reference:
|
[14] Natanson, L. P.: Theory of Functions of a Real Variable. Vol. I, revised edition..Frederick Ungar Publishing, New York 1961. MR 0148805 |
Reference:
|
[15] Nelsen, R. B.: An Introduction to Copulas. Second Edition..Springer, New York 2006. MR 2197664, 10.1007/0-387-28678-0 |
Reference:
|
[16] Schweizer, B., Sklar, A.: Probabilistic Metric Spaces..North-Holland, New York 1983. Reprinted, Dover, Mineola NY, 2005. Zbl 0546.60010, MR 0790314 |
Reference:
|
[17] Sklar, A.: Fonctions de répartition à n dimensions et leurs marges..Publ. Inst. Statist. Univ. Paris 8 (1959), 229-231. MR 0125600 |
Reference:
|
[18] Wysocki, W.: Characterizations of Archimedean n-copulas..Kybernetika 51 (2015), 212-230. Zbl 1340.62054, MR 3350557, 10.14736/kyb-2015-2-0212 |
. |