Previous |  Up |  Next

Article

Title: On Synge-type angle condition for $d$-simplices (English)
Author: Hannukainen, Antti
Author: Korotov, Sergey
Author: Křížek, Michal
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 62
Issue: 1
Year: 2017
Pages: 1-13
Summary lang: English
.
Category: math
.
Summary: The maximum angle condition of J. L. Synge was originally introduced in interpolation theory and further used in finite element analysis and applications for triangular and later also for tetrahedral finite element meshes. In this paper we present some of its generalizations to higher-dimensional simplicial elements. In particular, we prove optimal interpolation properties of linear simplicial elements in ${\mathbb R}^d$ that degenerate in some way. (English)
Keyword: simplicial element
Keyword: maximum angle condition
Keyword: interpolation error
Keyword: higher-dimensional problem
Keyword: $d$-dimensional sine
Keyword: semiregular family of simplicial partitions
MSC: 65N12
MSC: 65N15
MSC: 65N30
MSC: 65N50
idZBL: Zbl 06738478
idMR: MR3615475
DOI: 10.21136/AM.2017.0132-16
.
Date available: 2017-01-25T15:42:12Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/145984
.
Reference: [1] Apel, T.: Anisotropic Finite Elements: Local Estimates and Applications.Advances in Numerical Mathematics, Teubner, Stuttgart (1999). Zbl 0934.65121, MR 1716824
Reference: [2] Apel, T., Dobrowolski, M.: Anisotropic interpolation with applications to the finite element method.Computing 47 (1992), 277-293. Zbl 0746.65077, MR 1155498, 10.1007/BF02320197
Reference: [3] Babuška, I., Aziz, A. K.: On the angle condition in the finite element method.SIAM J. Numer. Anal. 13 (1976), 214-226. Zbl 0324.65046, MR 0455462, 10.1137/0713021
Reference: [4] Barnhill, R. E., Gregory, J. A.: Sard kernel theorems on triangular domains with application to finite element error bounds.Numer. Math. 25 (1975), 215-229. Zbl 0304.65076, MR 0458000, 10.1007/BF01399411
Reference: [5] Bartoš, P.: The sine theorem for simplexes in $E_n$.Cas. Mat. 93 (1968), 273-277 (In Czech). Zbl 0162.52302, MR 0248604
Reference: [6] Brandts, J., Korotov, S., Křížek, M.: On the equivalence of regularity criteria for triangular and tetrahedral finite element partitions.Comput. Math. Appl. 55 (2008), 2227-2233. Zbl 1142.65443, MR 2413688, 10.1016/j.camwa.2007.11.010
Reference: [7] Brandts, J., Korotov, S., Křížek, M.: On the equivalence of ball conditions for simplicial finite elements in ${\mathbb R}^d$.Appl. Math. Lett. 22 (2009), 1210-1212. Zbl 1173.52301, MR 2532540, 10.1016/j.aml.2009.01.031
Reference: [8] Brandts, J., Korotov, S., Křížek, M.: Generalization of the Zlámal condition for simplicial finite elements in $\mathbb R^d$.Appl. Math., Praha 56 (2011), 417-424. Zbl 1240.65327, MR 2833170, 10.1007/s10492-011-0024-1
Reference: [9] Cheng, S.-W., Dey, T. K., Edelsbrunner, H., Facello, M. A., Teng, S.-H.: Sliver exudation.Proc. of the Fifteenth Annual Symposium on Computational Geometry, Miami Beach, 1999 ACM, New York (1999), 1-13. MR 1802189, 10.1145/304893.304894
Reference: [10] Ciarlet, P. G.: The Finite Element Method for Elliptic Problems.Studies in Mathematics and Its Applications 4, North-Holland Publishing, Amsterdam (1978). Zbl 0383.65058, MR 0520174
Reference: [11] Edelsbrunner, H.: Triangulations and meshes in computational geometry.Acta Numerica (2000), 133-213. Zbl 1004.65024, MR 1883628, 10.1017/s0962492900001331
Reference: [12] Eriksson, F.: The law of sines for tetrahedra and $n$-simplices.Geom. Dedicata 7 (1978), 71-80. Zbl 0375.50008, MR 0474009, 10.1007/BF00181352
Reference: [13] Hannukainen, A., Korotov, S., Křížek, M.: The maximum angle condition is not necessary for convergence of the finite element method.Numer. Math. 120 (2012), 79-88. Zbl 1255.65196, MR 2885598, 10.1007/s00211-011-0403-2
Reference: [14] Jamet, P.: Estimations d'erreur pour des éléments finis droits presque dégénérées.Rev. Franc. Automat. Inform. Rech. Operat. {\it 10}, Analyse numer., R-1 (1976), 43-60. Zbl 0346.65052, MR 0455282
Reference: [15] Kobayashi, K., Tsuchiya, T.: A priori error estimates for Lagrange interpolation on triangles.Appl. Math., Praha 60 (2015), 485-499. Zbl 06486922, MR 3396477, 10.1007/s10492-015-0108-4
Reference: [16] Kobayashi, K., Tsuchiya, T.: On the circumradius condition for piecewise linear triangular elements.Japan J. Ind. Appl. Math. 32 (2015), 65-76. Zbl 1328.65052, MR 3318902, 10.1007/s13160-014-0161-5
Reference: [17] Kobayashi, K., Tsuchiya, T.: Extending Babuška-Aziz's theorem to higher-order Lagrange interpolation.Appl. Math., Praha 61 (2016), 121-133. Zbl 06562150, MR 3470770, 10.1007/s10492-016-0125-y
Reference: [18] Křížek, M.: On semiregular families of triangulations and linear interpolation.Appl. Math., Praha 36 (1991), 223-232. Zbl 0728.41003, MR 1109126
Reference: [19] Křížek, M.: On the maximum angle condition for linear tetrahedral elements.SIAM J. Numer. Anal. 29 (1992), 513-520. Zbl 0755.41003, MR 1154279, 10.1137/0729031
Reference: [20] Kučera, V.: A note on necessary and sufficient conditions for convergence of the finite element method.Proc. Conf. Appl. Math. 2015 (J. Brandts et al., eds.) Institute of Mathematics CAS, Prague (2015), 132-139. Zbl 1363.65189, MR 3700195
Reference: [21] Kučera, V.: On necessary and sufficient conditions for finite element convergence.Available at arXiv:1601.02942 (2016). MR 3700195
Reference: [22] Kučera, V.: Several notes on the circumradius condition.Appl. Math., Praha 61 (2016), 287-298. Zbl 06587853, MR 3502112, 10.1007/s10492-016-0132-z
Reference: [23] Mao, S., Shi, Z.: Error estimates of triangular finite elements under a weak angle condition.J. Comput. Appl. Math. 230 (2009), 329-331. Zbl 1168.65063, MR 2532314, 10.1016/j.cam.2008.11.008
Reference: [24] Oswald, P.: Divergence of FEM: Babuška-Aziz triangulations revisited.Appl. Math., Praha 60 (2015), 473-484. Zbl 06486921, MR 3396476, 10.1007/s10492-015-0107-5
Reference: [25] Rektorys, K.: Survey of Applicable Mathematics. Vol. I.Mathematics and Its Applications 280, Kluwer Academic Publishers, Dordrecht (1994). Zbl 0805.00002, MR 1282494, 10.1007/978-94-015-8308-4
Reference: [26] Strang, G., Fix, G. J.: An Analysis of the Finite Element Method.Prentice-Hall Series in Automatic Computation, Englewood Cliffs, New Jersey (1973). Zbl 356.65096, MR 0443377
Reference: [27] Synge, J. L.: The Hypercircle in Mathematical Physics. A Method for the Approximate Solution of Boundary Value Problems.Cambridge University Press, Cambridge (1957). Zbl 0079.13802, MR 0097605
Reference: [28] Ženíšek, A.: The convergence of the finite element method for boundary value problems of the system of elliptic equations.Apl. Mat. 14 (1969), 355-377 (In Czech). Zbl 0188.22604, MR 245978
Reference: [29] Zlámal, M.: On the finite element method.Numer. Math. 12 (1968), 394-409. Zbl 0176.16001, MR 0243753, 10.1007/BF02161362
.

Files

Files Size Format View
AplMat_62-2017-1_1.pdf 290.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo