Previous |  Up |  Next

Article

Title: Convergence of the matrix transformation method for the finite difference approximation of fractional order diffusion problems (English)
Author: Szekeres, Béla J.
Author: Izsák, Ferenc
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 62
Issue: 1
Year: 2017
Pages: 15-36
Summary lang: English
.
Category: math
.
Summary: Numerical solution of fractional order diffusion problems with homogeneous Dirichlet boundary conditions is investigated on a square domain. An appropriate extension is applied to have a well-posed problem on $\mathbb {R}^2$ and the solution on the square is regarded as a localization. For the numerical approximation a finite difference method is applied combined with the matrix transformation method. Here the discrete fractional Laplacian is approximated with a matrix power instead of computing the complicated approximations of fractional order derivatives. The spatial convergence of this method is proved and demonstrated by some numerical experiments. (English)
Keyword: fractional diffusion problem
Keyword: finite differences
Keyword: matrix transformation method
MSC: 35R11
MSC: 65M06
MSC: 65M12
idZBL: Zbl 06738479
idMR: MR3615476
DOI: 10.21136/AM.2017.0385-15
.
Date available: 2017-01-25T15:43:38Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/145987
.
Reference: [1] Abatangelo, N., Dupaigne, L.: Nonhomogeneous boundary conditions for the spectral fractional Laplacian.To appear in Ann. Inst. Henri Poincaré, Anal. Non. Linéaire (2016). MR 3610940, 10.1016/j.anihpc.2016.02.001
Reference: [2] Bátkai, A., Csomós, P., Farkas, B.: Semigroups for Numerical Analysis.Internet-Seminar Manuscript, 2012, tt{https://isem-mathematik.uibk.ac.at}.
Reference: [3] Benson, D. A., Wheatcraft, S. W., Meerschaert, M. M.: Application of a fractional advection-dispersion equation.Water Resour. Res. 36 (2000), 1403-1412. 10.1029/2000wr900031
Reference: [4] Canuto, C., Quarteroni, A.: Spectral and pseudo-spectral methods for parabolic problems with non periodic boundary conditions.Calcolo 18 (1981), 197-217. Zbl 0485.65078, MR 0647825, 10.1007/bf02576357
Reference: [5] Nezza, E. Di, Palatucci, G., Valdinoci, E.: Hitchhiker's guide to the fractional Sobolev spaces.Bull. Sci. Math. 136 (2012), 521-573. Zbl 1252.46023, MR 2944369, 10.1016/j.bulsci.2011.12.004
Reference: [6] Du, Q., Gunzburger, M., Lehoucq, R. B., Zhou, K.: Analysis and approximation of nonlocal diffusion problems with volume constraints.SIAM Rev. 54 (2012), 667-696. Zbl 06122544, MR 3023366, 10.1137/110833294
Reference: [7] Du, Q., Gunzburger, M., Lehoucq, R. B., Zhou, K.: A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws.Math. Models Methods Appl. Sci. 23 (2013), 493-540. Zbl 1266.26020, MR 3010838, 10.1142/S0218202512500546
Reference: [8] A. M. Edwards, R. A. Phillips, N. W. Watkins, M. P. Freeman, E. J. Murphy, V. Afanasyev, S. V. Buldyrev, M. G. E. da Luz, E. P. Raposo, H. E. Stanley, G. M. Viswanathan: Revisiting Lévy flight search patterns of wandering albatrosses, bumblebees and deer.Nature 449 (2007), 1044-1048. MR 2550512, 10.1038/nature06199
Reference: [9] Engel, K.-J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations.Graduate Texts in Mathematics 194, Springer, Berlin (2000). Zbl 0952.47036, MR 1721989, 10.1007/b97696
Reference: [10] Feng, L. B., Zhuang, P., Liu, F., Turner, I.: Stability and convergence of a new finite volume method for a two-sided space-fractional diffusion equation.Appl. Math. Comput. 257 (2015), 52-65. Zbl 1339.65144, MR 3320648, 10.1016/j.amc.2014.12.060
Reference: [11] Gradshteyn, I. S., Ryzhik, I. M.: Table of Integrals, Series, and Products.Academic Press, San Diego (2000). Zbl 0981.65001, MR 1773820, 10.1016/b978-0-12-294757-5.x5000-4
Reference: [12] Ilic, M., Liu, F., Turner, I., Anh, V.: Numerical approximation of a fractional-in-space diffusion equation. I.Fract. Calc. Appl. Anal. 8 (2005), 323-341. Zbl 1126.26009, MR 2252038
Reference: [13] Ilic, M., Liu, F., Turner, I., Anh, V.: Numerical approximation of a fractional-in-space diffusion equation. II. With nonhomogeneous boundary conditions.Fract. Calc. Appl. Anal. 9 (2006), 333-349. Zbl 1132.35507, MR 2300467
Reference: [14] Ilić, M., Turner, I. W., Simpson, D. P.: A restarted Lanczos approximation to functions of a symmetric matrix.IMA J. Numer. Anal. 30 (2010), 1044-1061. Zbl 1220.65052, MR 2727815, 10.1093/imanum/drp003
Reference: [15] Kilbas, A. A., Srivastava, H. M., Trujillo, J. J.: Theory and Applications of Fractional Differential Equations.North-Holland Mathematics Studies 204, Elsevier, Amsterdam (2006). Zbl 1092.45003, MR 2218073, 10.1016/s0304-0208(06)x8001-5
Reference: [16] Li, C., Zhao, Z., Chen, Y.: Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion.Comput. Math. Appl. 62 (2011), 855-875. Zbl 1228.65190, MR 2824676, 10.1016/j.camwa.2011.02.045
Reference: [17] Liu, F., Zhuang, P., Anh, V., Turner, I.: A fractional-order implicit difference approximation for the space-time fractional diffusion equation.ANZIAM J. 47 (2005), C48--C68. MR 2226522, 10.21914/anziamj.v47i0.1030
Reference: [18] Mainardi, F., Luchko, Y., Pagnini, G.: The fundamental solution of the space-time fractional diffusion equation.Fract. Calc. Appl. Anal. 4 (2001), 153-192. Zbl 1054.35156, MR 1829592
Reference: [19] Meerschaert, M. M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations.J. Comput. Appl. Math. 172 (2004), 65-77. Zbl 1126.76346, MR 2091131, 10.1016/j.cam.2004.01.033
Reference: [20] Michelitsch, T., Maugin, G., Nowakowski, A., Nicolleau, F., Rahman, M.: The fractional Laplacian as a limiting case of a self-similar spring model and applications to $n$-dimensional anomalous diffusion.Fract. Calc. Appl. Anal. 16 (2013), 827-859. Zbl 1314.35209, MR 3124339, 10.2478/s13540-013-0052-5
Reference: [21] Nochetto, R. H., Otárola, E., Salgado, A. J.: A PDE approach to fractional diffusion in general domains: a priori error analysis.Found. Comput. Math. 15 (2015), 733-791. Zbl 1347.65178, MR 3348172, 10.1007/s10208-014-9208-x
Reference: [22] Pasciak, J. E.: Spectral and pseudo spectral methods for advection equations.Math. Comput. 35 (1980), 1081-1092. Zbl 0448.65071, MR 583488, 10.2307/2006376
Reference: [23] Podlubny, I.: Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and some of their Applications.Mathematics in Science and Engineering 198, Academic Press, San Diego (1999). Zbl 0924.34008, MR 1658022, 10.1016/s0076-5392(99)x8001-5
Reference: [24] Samko, S. G., Kilbas, A. A., Marichev, O. I.: Fractional Integrals and Derivatives: Theory and Applications.Gordon and Breach, New York (1993). Zbl 0818.26003, MR 1347689
Reference: [25] Szekeres, B. J., Izsák, F.: A finite difference method for fractional diffusion equations with Neumann boundary conditions.Open Math. (electronic only) 13 (2015), 581-600. Zbl 06632236, MR 3403508, 10.1515/math-2015-0056
Reference: [26] Szekeres, B. J., Izsák, F.: Finite element approximation of fractional order elliptic boundary value problems.J. Comput. Appl. Math. 292 (2016), 553-561. Zbl 1327.65215, MR 3392412, 10.1016/j.cam.2015.07.026
Reference: [27] Tadjeran, C., Meerschaert, M. M., Scheffler, H.-P.: A second-order accurate numerical approximation for the fractional diffusion equation.J. Comput. Phys. 213 (2006), 205-213. Zbl 1089.65089, MR 2203439, 10.1016/j.jcp.2005.08.008
Reference: [28] Tian, W., Zhou, H., Deng, W.: A class of second order difference approximations for solving space fractional diffusion equations.Math. Comput. 84 (2015), 1703-1727. Zbl 1318.65058, MR 3335888, 10.1090/S0025-5718-2015-02917-2
Reference: [29] Yang, Q., Turner, I., Moroney, T., Liu, F.: A finite volume scheme with preconditioned Lanczos method for two-dimensional space-fractional reaction-diffusion equations.Appl. Math. Model. 38 (2014), 3755-3762. MR 3233804, 10.1016/j.apm.2014.02.005
Reference: [30] Zhou, H., Tian, W., Deng, W.: Quasi-compact finite difference schemes for space fractional diffusion equations.J. Sci. Comput. 56 (2013), 45-66. Zbl 1278.65130, MR 3049942, 10.1007/s10915-012-9661-0
.

Files

Files Size Format View
AplMat_62-2017-1_2.pdf 348.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo