Previous |  Up |  Next

Article

Title: A new error correction method for the stationary Navier-Stokes equations based on two local Gauss integrations (English)
Author: Yang, Yun-Bo
Author: Kong, Qiong-Xiang
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 62
Issue: 1
Year: 2017
Pages: 75-100
Summary lang: English
.
Category: math
.
Summary: A new error correction method for the stationary Navier-Stokes equations based on two local Gauss integrations is presented. Applying the orthogonal projection technique, we introduce two local Gauss integrations as a stabilizing term in the error correction method, and derive a new error correction method. In both the coarse solution computation step and the error computation step, a locally stabilizing term based on two local Gauss integrations is introduced. The stability and convergence of the new error correction algorithm are established. Numerical examples are also presented to verify the theoretical analysis and demonstrate the efficiency of the proposed method. (English)
Keyword: Navier-Stokes equation
Keyword: finite element method
Keyword: variational multiscale
Keyword: two local Gauss integrations
Keyword: error correction method
MSC: 65N12
MSC: 65N15
MSC: 65N30
MSC: 76D05
MSC: 76M10
idZBL: Zbl 06738482
idMR: MR3615479
DOI: 10.21136/AM.2017.0119-16
.
Date available: 2017-01-25T15:46:29Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/145990
.
Reference: [1] Brenner, S. C., Scott, L. R.: The Mathematical Theory of Finite Element Methods.Texts in Applied Mathematics 15, Springer, New York (2008). Zbl 1135.65042, MR 2373954, 10.1007/978-0-387-75934-0
Reference: [2] Erturk, E., Corke, T. C., Gökçöl, C.: Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers.Int. J. Numer. Methods Fluids 48 (2005), 747-774. Zbl 1071.76038, 10.1002/fld.953
Reference: [3] Ervin, V. J., Layton, W. J., Maubach, J. M.: Adaptive defect-correction methods for viscous incompressible flow problems.SIAM J. Numer. Anal. 37 (2000), 1165-1185. Zbl 1049.76038, MR 1756420, 10.1137/S0036142997318164
Reference: [4] Gartling, D. K.: A test problem for outflow boundary conditions---flow over a backward-facing step.Int. J. Numer. Methods Fluids 11 (1990), 953-967. 10.1002/fld.1650110704
Reference: [5] Ghia, U., Ghia, K. N., Shin, C. T.: High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method.J. Comput. Phys. 48 (1982), 387-411. Zbl 0511.76031, 10.1016/0021-9991(82)90058-4
Reference: [6] Girault, V., Raviart, P.-A.: Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms.Springer Series in Computational Mathematics 5, Springer, Berlin (1986). Zbl 0585.65077, MR 0851383, 10.1007/978-3-642-61623-5
Reference: [7] Gresho, P. M., Lee, R. L., Chan, S. T., Sani, R. L.: Solution of the time-dependent incompressible Navier-Stokes and Boussinesq equations using the Galerkin finite element method.Approximation Methods for Navier-Stokes Problems, Proc. Symp. IUTAM, Paderborn 1979 Lect. Notes in Math. 771, Springer, Berlin (1980), 203-222. Zbl 0428.76026, MR 0565998, 10.1007/BFb0086908
Reference: [8] Guermond, J.-L., Marra, A., Quartapelle, L.: Subgrid stabilized projection method for 2D unsteady flows at high Reynolds numbers.Comput. Methods Appl. Mech. Eng. 195 (2006), 5857-5876. Zbl 1121.76036, MR 2250923, 10.1016/j.cma.2005.08.016
Reference: [9] Gunzburger, M. D.: Finite Element Methods for Viscous Incompressible Flows. A Guide to Theory, Practice, and Algorithms.Computer Science and Scientific Computing, Academic Press, Boston (1989). Zbl 0697.76031, MR 1017032
Reference: [10] He, Y., Li, J.: Convergence of three iterative methods based on the finite element discretization for the stationary Navier-Stokes equations.Comput. Methods Appl. Mech. Eng. 198 (2009), 1351-1359. Zbl 1227.76031, MR 2497612, 10.1016/j.cma.2008.12.001
Reference: [11] He, Y., Wang, A., Mei, L.: Stabilized finite-element method for the stationary Navier-Stokes equations.J. Eng. Math. 51 (2005), 367-380. Zbl 1069.76031, MR 2146399, 10.1007/s10665-004-3718-5
Reference: [12] Hecht, F.: New development in freefem++.J. Numer. Math. 20 (2012), 251-265. Zbl 1266.68090, MR 3043640, 10.1515/jnum-2012-0013
Reference: [13] Huang, P., Feng, X., He, Y.: Two-level defect-correction Oseen iterative stabilized finite element methods for the stationary Navier-Stokes equations.Appl. Math. Modelling 37 (2013), 728-741. Zbl 1351.76060, MR 3002184, 10.1016/j.apm.2012.02.051
Reference: [14] Huang, P., He, Y., Feng, X.: A new defect-correction method for the stationary Navier-Stokes equations based on local Gauss integration.Math. Methods Appl. Sci. 35 (2012), 1033-1046. Zbl 1246.76054, MR 2931209, 10.1002/mma.1618
Reference: [15] Hughes, T. J. R., Mazzei, L., Jansen, K. E.: Large eddy simulation and the variational multiscale method.Comput. Vis. Sci. 3 (2000), 47-59. Zbl 0998.76040, 10.1007/s007910050051
Reference: [16] John, V., Kaya, S.: A finite element variational multiscale method for the Navier-Stokes equations.SIAM J. Sci. Comput. 26 (2005), 1485-1503. Zbl 1073.76054, MR 2142582, 10.1137/030601533
Reference: [17] Kaya, S., Rivière, B.: A two-grid stabilization method for solving the steady-state Navier-Stokes equations.Numer. Methods Partial Differ. Equations 22 (2006), 728-743. Zbl 1089.76034, MR 2212234, 10.1002/num.20120
Reference: [18] Labovschii, A.: A defect correction method for the time-dependent Navier-Stokes equations.Numer. Methods Partial Differ. Equations 25 (2009), 1-25. Zbl 05490411, MR 2473678, 10.1002/num.20329
Reference: [19] Layton, W.: A connection between subgrid scale eddy viscosity and mixed methods.Appl. Math. Comput. 133 (2002), 147-157. Zbl 1024.76026, MR 1923189, 10.1016/S0096-3003(01)00228-4
Reference: [20] Layton, W., Lee, H. K., Peterson, J.: A defect-correction method for the incompressible Navier-Stokes equations.Appl. Math. Comput. 129 (2002), 1-19. Zbl 1074.76033, MR 1897318, 10.1016/S0096-3003(01)00026-1
Reference: [21] Li, J., He, Y.: A stabilized finite element method based on two local Gauss integrations for the Stokes equations.J. Comput. Appl. Math. 214 (2008), 58-65. Zbl 1132.35436, MR 2391672, 10.1016/j.cam.2007.02.015
Reference: [22] Li, Y., Mei, L., Li, Y., Zhao, K.: A two-level variational multiscale method for incompressible flows based on two local Gauss integrations.Numer. Methods Partial Differ. Equations 29 (2013), 1986-2003. Zbl 1277.76019, MR 3116554, 10.1002/num.21785
Reference: [23] Liu, Q., Hou, Y.: A two-level defect-correction method for Navier-Stokes equations.Bull. Aust. Math. Soc. 81 (2010), 442-454. Zbl 05712510, MR 2639859, 10.1017/S0004972709000859
Reference: [24] Melhem, H. G.: Finite element approximation to heat transfer through construction glass blocks.Mechanics Computing in 1990's and Beyond American Society of Civil Engineers (1991), 193-197.
Reference: [25] Temam, R.: Navier-Stokes Equations. Theory and Numerical Analysis.Studies in Mathematics and Its Applications 2, North-Holland, Amsterdam (1984). Zbl 0568.35002, MR 0769654
Reference: [26] Wang, K., Wong, Y. S.: Error correction method for Navier-Stokes equations at high Reynolds numbers.J. Comput. Phys. 255 (2013), 245-265. Zbl 1349.76281, MR 3109787, 10.1016/j.jcp.2013.07.042
Reference: [27] Wong, K. L., Baker, A. J.: A 3D incompressible Navier-Stokes velocity-vorticity weak form finite element algorithm.Int. J. Numer. Methods Fluids 38 (2002), 99-123. Zbl 1009.76059, 10.1002/fld.204
Reference: [28] Zheng, H., Hou, Y., Shi, F., Song, L.: A finite element variational multiscale method for incompressible flows based on two local Gauss integrations.J. Comput. Phys. 228 (2009), 5961-5977. Zbl 1168.76028, MR 2542923, 10.1016/j.jcp.2009.05.006
Reference: [29] Zienkiewicz, O. C., Taylor, R. L.: The Finite Element Method for Solid and Structural Mechanics.Elsevier/Butterworth Heinemann, Amsterdam (2005). Zbl 1084.74001, MR 3292651, 10.1016/B978-075066431-8.50166-1
.

Files

Files Size Format View
AplMat_62-2017-1_5.pdf 2.400Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo