Previous |  Up |  Next

Article

Title: Convergence theory for the exact interpolation scheme with approximation vector as the first column of the prolongator and Rayleigh quotient iteration nonlinear smoother (English)
Author: Vaněk, Petr
Author: Pultarová, Ivana
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 62
Issue: 1
Year: 2017
Pages: 49-73
Summary lang: English
.
Category: math
.
Summary: We extend the analysis of the recently proposed nonlinear EIS scheme applied to the partial eigenvalue problem. We address the case where the Rayleigh quotient iteration is used as the smoother on the fine-level. Unlike in our previous theoretical results, where the smoother given by the linear inverse power method is assumed, we prove nonlinear speed-up when the approximation becomes close to the exact solution. The speed-up is cubic. Unlike existent convergence estimates for the Rayleigh quotient iteration, our estimates take advantage of the powerful effect of the coarse-space. (English)
Keyword: nonlinear multigrid
Keyword: exact interpolation scheme
MSC: 65F15
MSC: 65N55
idZBL: Zbl 06738481
idMR: MR3615478
DOI: 10.21136/AM.2017.0101-16
.
Date available: 2017-01-25T15:45:10Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/145989
.
Reference: [1] Brandt, A., Ron, D.: Multigrid solvers and multilevel Optimization Strategies.Multilevel Optimization in VLSICAD (J. Cong et al., eds) Comb. Optim. 14, Kluwer Academic Publishers, Dordrecht 1-69 (2003). Zbl 1046.65043, MR 2021995, 10.1007/978-1-4757-3748-6_1
Reference: [2] Ciarlet, P. G.: The Finite Element Method for Elliptic Problems.Studies in Mathematics and Its Applications 4, North-Holland Publishing, Amsterdam (1978). Zbl 0383.65058, MR 0520174, 10.1016/s0168-2024(08)x7014-6
Reference: [3] Crouzeix, M., Philippe, B., Sadkane, M.: The Davidson method.SIAM J. Sci. Comput. 15 (1994), 62-76. Zbl 0803.65042, MR 1257154, 10.1137/0915004
Reference: [4] Fraňková, P., Hanuš, M., Kopincová, H., Kužel, R., Marek, I., Pultarová, I., Vaněk, P., Vastl, Z.: Convergence theory for the exact interpolation scheme with approximation vector as the first column of the prolongator: the partial eigenvalue problem.Submitted to Numer. Math.
Reference: [5] Knyazev, A. V.: Convergence rate estimates for iterative methods for a mesh symmetric eigenvalue problem.Sov. J. Numer. Anal. Math. Model. 2 371-396 (1987). Zbl 0825.65034, MR 0915330, 10.1515/rnam.1987.2.5.371
Reference: [6] Kushnir, D., Galun, M., Brandt, A.: Efficient multilevel eigensolvers with applications to data analysis tasks.IEEE Trans. Pattern Anal. Mach. Intell. 32 (2010), 1377-1391. 10.1109/TPAMI.2009.147
Reference: [7] Kužel, R., Vaněk, P.: Exact interpolation scheme with approximation vector used as a column of the prolongator.Numer. Linear Algebra Appl. (electronic only) 22 (2015), 950-964. Zbl 06604517, MR 3426323, 10.1002/nla.1975
Reference: [8] Mandel, J., Sekerka, B.: A local convergence proof for the iterative aggregation method.Linear Algebra Appl. 51 (1983), 163-172. Zbl 0494.65014, MR 0699731, 10.1016/0024-3795(83)90157-X
Reference: [9] Notay, Y.: Combination of Jacobi-Davidson and conjugate gradients for the partial symmetric eigenproblem.Numer. Linear Algebra Appl. 9 (2002), 21-44. Zbl 1071.65516, MR 1874781, 10.1002/nla.246
Reference: [10] Oliveira, S.: On the convergence rate of a preconditioned subspace eigensolver.Computing 63 (1999), 219-231. Zbl 0944.65039, MR 1738755, 10.1007/s006070050032
Reference: [11] Ovtchinnikov, E.: Convergence estimates for the generalized Davidson method for symmetric eigenvalue problems. II: The subspace acceleration.SIAM J. Numer. Anal. 41 (2003), 272-286. Zbl 1078.65538, MR 1974502, 10.1137/S0036142902411768
Reference: [12] Parlett, B. N.: The Symmetric Eigenvalue Problem.Classics in Applied Mathematics 20, Society for Industrial and Applied Mathematics, Philadelphia (1987). MR 1490034
.

Files

Files Size Format View
AplMat_62-2017-1_4.pdf 343.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo