Previous |  Up |  Next

Article

Title: On a certain class of arithmetic functions (English)
Author: Oller-Marcén, Antonio M.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 142
Issue: 1
Year: 2017
Pages: 21-25
Summary lang: English
.
Category: math
.
Summary: A homothetic arithmetic function of ratio $K$ is a function $f\colon \mathbb {N}\rightarrow R$ such that $f(Kn)=f(n)$ for every $n\in \mathbb {N}$. Periodic arithmetic funtions are always homothetic, while the converse is not true in general. In this paper we study homothetic and periodic arithmetic functions. In particular we give an upper bound for the number of elements of $f(\mathbb {N})$ in terms of the period and the ratio of $f$. (English)
Keyword: arithmetic function
Keyword: periodic function
Keyword: homothetic function
MSC: 11A25
MSC: 11B99
MSC: 11N37
idZBL: Zbl 06738567
idMR: MR3619984
DOI: 10.21136/MB.2017.0071-14
.
Date available: 2017-02-21T17:20:18Z
Last updated: 2020-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/146006
.
Reference: [1] Apostol, T. M.: Introduction to Analytic Number Theory.Undergraduate Texts in Mathematics Springer, New York (1976). Zbl 0335.10001, MR 0434929
Reference: [2] Cohen, E.: A property of Dedekind's {$\psi $}-function.Proc. Am. Math. Soc. 12 (1961), 996. Zbl 0144.28201, MR 0132717, 10.2307/2034413
Reference: [3] Ghiyasi, A. K.: Constants in inequalities for the mean values of some periodic arithmetic functions.Mosc. Univ. Math. Bull. 63 (2008), 265-269 translation from Vest. Mosk. Univ. Mat. Mekh. 63 2008 44-48. Zbl 1304.11085, MR 2517021, 10.3103/S0027132208060077
Reference: [4] Grau, J. M., Oller-Marcén, A. M.: On the last digit and the last non-zero digit of $n^n$ in base {$b$}.Bull. Korean Math. Soc. 51 (2014), 1325-1337. Zbl 1302.11002, MR 3267232, 10.4134/BKMS.2014.51.5.1325
Reference: [5] Pilehrood, T. Hessami, Pilehrood, K. Hessami: On a conjecture of Erdős.Math. Notes 83 (2008), 281-284 translation from Mat. Zametki83 2008 312-315. Zbl 1157.11031, MR 2431590, 10.1134/S0001434608010306
Reference: [6] Ji, Q.-Z., Ji, C.-G.: On the periodicity of some Farhi arithmetical functions.Proc. Am. Math. Soc. 138 (2010), 3025-3035. Zbl 1246.11013, MR 2653927, 10.1090/S0002-9939-10-10408-0
Reference: [7] Rausch, U.: Character sums in algebraic number fields.J. Number Theory 46 (1994), 179-195. Zbl 0795.11033, MR 1269251, 10.1006/jnth.1994.1011
Reference: [8] Steuding, J.: Dirichlet series associated to periodic arithmetic functions and the zeros of Dirichlet {$L$}-functions.Analytic and Probabilistic Methods in Number Theory. Proc. Int. Conf., Palanga, Lithuania, 2001 A. Dubickas et al. TEV, Vilnius (2002), 282-296. Zbl 1035.11041, MR 1964871
.

Files

Files Size Format View
MathBohem_142-2017-1_3.pdf 229.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo