[1] Bolza, O.:
The Determination of the Conjugate Points for Discontinuous Solutions in the Calculus of Variations. Amer. J. Math., 30, 1908, 209-221,
DOI 10.2307/2369947 |
MR 1506040
[2] Caratheodory, C.: Über die diskontinuierlichen Lösungen in der Variationsrechnung, Doctor-Dissertation, Universität Göttingen 1904. Gesammelte Mathematische Scriften, 1954, C. H. Beck'sche Verlagsbuchhandlulng,
[3] Caratheodory, C.:
Über die starken Maxima und Minima bei einfachen Integralen, Habilitationsschrift, Universität Gottingen 1905. Mathematische Annalen, 62, 1906, 449-503,
DOI 10.1007/BF01449816 |
MR 1511387
[4] Caratheodory, C.: Sur les points singuliers du problème du Calcul des Variations dans le plan. Annali di Matematica pura e applicata, 21, 1913, 153-171,
[6] Dresden, A.:
An Example of the Indicatrix in the Calculus of Variations (continued). Am. Math. Mon., 14, 1907, 143-150,
DOI 10.2307/2969106 |
MR 1516868
[8] Erdmann, G.:
Über die unstetige Lösungen in der Variationsrechnung. J. Reine Angew. Math., 82, 1877, 21-30,
MR 1579696
[9] Giaquinta, M., Hildebrandt, S.:
Calculus of variations I, II. 1996, Springer-Verlag, Berlin, Heidelberg, New York,
MR 1385926
[11] Graves, L.M.:
Discontinuous Solutions in Space Problems of the Calculus of Variations. Amer. J. Math., 52, 1930, 1-28,
DOI 10.2307/2370644 |
MR 1507915
[12] Hadamard, J.: Leçons sur le calcul des variations. Hermann et fils, Paris, 1910, 3-88,
[13] Hestenes, M. R.:
Calculus of variations and optimal control theory. 1966, Wiley, New York, London, Sydney,
MR 0203540 |
Zbl 0173.35703
[14] Massa, E., Bruno, D., Luria, G., Pagani, E.:
Geometric constrained variational calculus. I: Piecewise smooth extremals. Int. J. Geom. Methods Mod. Phys., 12, 2015, 1550061.
DOI 10.1142/S0219887815500619 |
MR 3349930 |
Zbl 1319.49031
[15] Massa, E., Bruno, D., Luria, G., Pagani, E.:
Geometric constrained variational calculus. II: The second variation (Part I). Int. J. Geom. Methods Mod. Phys., 13, 2016, 1550132.
MR 3438668 |
Zbl 1345.49025
[16] Massa, E., Luria, G., Pagani,, E.:
Geometric constrained variational calculus. III: The second variation (Part II). Int. J. Geom. Methods Mod. Phys., 13, 2016, 1650038.
MR 3479786 |
Zbl 1345.49026
[17] Milyutin, A. A., Osmolovskii, N. P.:
Calculus of Variations and Optimal Control (Translations of Mathematical Monographs). 1998, American Mathematical Society,
MR 1641590
[18] Osmolovskii, N.P., Lempio, F.:
Jacobi conditions and the Riccati equation for a broken extremal. J. Math. Sci, 100, 2000, 2572-2592,
DOI 10.1007/BF02673843 |
MR 1776562
[19] Osmolovskii, N.P., Lempio, F.:
Transformation of Quadratic Forms to Perfect Squares for Broken Extremals. Set-Valued Var. Anal., 10, 2002, 209-232,
MR 1926381 |
Zbl 1050.49016
[20] Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishchenko, E.F.:
The mathematical theory of optimal processes. 1962, Interscience Publishers John Wiley & Sons Inc, New York-London,
MR 0166037
[23] Sagan, H.: Introduction to the calculus of variations. 1969, McGraw--Hill Book Company, New York,