Previous |  Up |  Next

Article

Keywords:
constrained variational calculus; second variation; Jacobi fields.
Summary:
In variational calculus, the minimality of a given functional under arbitrary deformations with fixed end-points is established through an analysis of the so called \emph {second variation}. In this paper, the argument is examined in the context of constrained variational calculus, assuming piecewise differentiable extremals, commonly referred to as \emph {extremaloids}. The approach relies on the existence of a fully covariant representation of the second variation of the action functional, based on a family of \emph {local} gauge transformations of the original Lagrangian and on a set of scalar attributes of the extremaloid, called the corners' \emph {strengths} \cite {mlp}. In discussing the positivity of the second variation, a relevant role is played by the \emph {Jacobi fields}, defined as infinitesimal generators of $1$-parameter groups of diffeomorphisms preserving the extremaloids. Along a piecewise differentiable extremal, these fields are generally discontinuous across the corners. A thorough analysis of this point is presented. An alternative characterization of the Jacobi fields as solutions of a suitable \emph {accessory variational problem} is established.
References:
[1] Bolza, O.: The Determination of the Conjugate Points for Discontinuous Solutions in the Calculus of Variations. Amer. J. Math., 30, 1908, 209-221, DOI 10.2307/2369947 | MR 1506040
[2] Caratheodory, C.: Über die diskontinuierlichen Lösungen in der Variationsrechnung, Doctor-Dissertation, Universität Göttingen 1904. Gesammelte Mathematische Scriften, 1954, C. H. Beck'sche Verlagsbuchhandlulng,
[3] Caratheodory, C.: Über die starken Maxima und Minima bei einfachen Integralen, Habilitationsschrift, Universität Gottingen 1905. Mathematische Annalen, 62, 1906, 449-503, DOI 10.1007/BF01449816 | MR 1511387
[4] Caratheodory, C.: Sur les points singuliers du problème du Calcul des Variations dans le plan. Annali di Matematica pura e applicata, 21, 1913, 153-171,
[5] Dresden, A.: An Example of the Indicatrix in the Calculus of Variations. Am. Math. Mon., 14, 1907, 119-126, DOI 10.2307/2971687 | MR 1516849
[6] Dresden, A.: An Example of the Indicatrix in the Calculus of Variations (continued). Am. Math. Mon., 14, 1907, 143-150, DOI 10.2307/2969106 | MR 1516868
[7] Dresden, A.: The Second Derivatives of the Extremal-Integral. Trans. Amer. Math. Soc., 9, 1908, 467-486, DOI 10.1090/S0002-9947-1908-1500822-8 | MR 1500822
[8] Erdmann, G.: Über die unstetige Lösungen in der Variationsrechnung. J. Reine Angew. Math., 82, 1877, 21-30, MR 1579696
[9] Giaquinta, M., Hildebrandt, S.: Calculus of variations I, II. 1996, Springer-Verlag, Berlin, Heidelberg, New York, MR 1385926
[10] Graves, L.M.: Discontinuous Solutions in the Calculus of Variations. Bull. Amer. Math. Soc., 36, 1930, 831-846, DOI 10.1090/S0002-9904-1930-05074-0 | MR 1562066
[11] Graves, L.M.: Discontinuous Solutions in Space Problems of the Calculus of Variations. Amer. J. Math., 52, 1930, 1-28, DOI 10.2307/2370644 | MR 1507915
[12] Hadamard, J.: Leçons sur le calcul des variations. Hermann et fils, Paris, 1910, 3-88,
[13] Hestenes, M. R.: Calculus of variations and optimal control theory. 1966, Wiley, New York, London, Sydney, MR 0203540 | Zbl 0173.35703
[14] Massa, E., Bruno, D., Luria, G., Pagani, E.: Geometric constrained variational calculus. I: Piecewise smooth extremals. Int. J. Geom. Methods Mod. Phys., 12, 2015, 1550061. DOI 10.1142/S0219887815500619 | MR 3349930 | Zbl 1319.49031
[15] Massa, E., Bruno, D., Luria, G., Pagani, E.: Geometric constrained variational calculus. II: The second variation (Part I). Int. J. Geom. Methods Mod. Phys., 13, 2016, 1550132. MR 3438668 | Zbl 1345.49025
[16] Massa, E., Luria, G., Pagani,, E.: Geometric constrained variational calculus. III: The second variation (Part II). Int. J. Geom. Methods Mod. Phys., 13, 2016, 1650038. MR 3479786 | Zbl 1345.49026
[17] Milyutin, A. A., Osmolovskii, N. P.: Calculus of Variations and Optimal Control (Translations of Mathematical Monographs). 1998, American Mathematical Society, MR 1641590
[18] Osmolovskii, N.P., Lempio, F.: Jacobi conditions and the Riccati equation for a broken extremal. J. Math. Sci, 100, 2000, 2572-2592, DOI 10.1007/BF02673843 | MR 1776562
[19] Osmolovskii, N.P., Lempio, F.: Transformation of Quadratic Forms to Perfect Squares for Broken Extremals. Set-Valued Var. Anal., 10, 2002, 209-232, MR 1926381 | Zbl 1050.49016
[20] Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: The mathematical theory of optimal processes. 1962, Interscience Publishers John Wiley & Sons Inc, New York-London, MR 0166037
[21] Reid, W.T.: Discontinuous Solutions in the Non-Parametric Problem of Mayer in the Calculus of Variations. Amer. J. Math., 57, 1935, 69-93, DOI 10.2307/2372020 | MR 1507056 | Zbl 0011.02704
[22] Rider, P.R.: The figuratix in the Calculus of Variations. Trans. Amer. Math. Soc., 28, 1926, 640-653, DOI 10.1090/S0002-9947-1926-1501368-4 | MR 1501368
[23] Sagan, H.: Introduction to the calculus of variations. 1969, McGraw--Hill Book Company, New York,
Partner of
EuDML logo