Previous |  Up |  Next

Article

Title: On the notion of Jacobi fields in constrained calculus of variations (English)
Author: Massa, Enrico
Author: Pagani, Enrico
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388
Volume: 24
Issue: 2
Year: 2016
Pages: 91-113
Summary lang: English
.
Category: math
.
Summary: In variational calculus, the minimality of a given functional under arbitrary deformations with fixed end-points is established through an analysis of the so called \emph {second variation}. In this paper, the argument is examined in the context of constrained variational calculus, assuming piecewise differentiable extremals, commonly referred to as \emph {extremaloids}. The approach relies on the existence of a fully covariant representation of the second variation of the action functional, based on a family of \emph {local} gauge transformations of the original Lagrangian and on a set of scalar attributes of the extremaloid, called the corners' \emph {strengths} \cite {mlp}. In discussing the positivity of the second variation, a relevant role is played by the \emph {Jacobi fields}, defined as infinitesimal generators of $1$-parameter groups of diffeomorphisms preserving the extremaloids. Along a piecewise differentiable extremal, these fields are generally discontinuous across the corners. A thorough analysis of this point is presented. An alternative characterization of the Jacobi fields as solutions of a suitable \emph {accessory variational problem} is established. (English)
Keyword: constrained variational calculus; second variation; Jacobi fields.
MSC: 49J--
MSC: 53B05
MSC: 58F05
MSC: 65K10
MSC: 70D10
MSC: 70Q05
idZBL: Zbl 1364.49022
idMR: MR3590208
.
Date available: 2017-02-28T16:40:31Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/146014
.
Reference: [1] Bolza, O.: The Determination of the Conjugate Points for Discontinuous Solutions in the Calculus of Variations.Amer. J. Math., 30, 1908, 209-221, MR 1506040, 10.2307/2369947
Reference: [2] Caratheodory, C.: Über die diskontinuierlichen Lösungen in der Variationsrechnung, Doctor-Dissertation, Universität Göttingen 1904.Gesammelte Mathematische Scriften, 1954, C. H. Beck'sche Verlagsbuchhandlulng,
Reference: [3] Caratheodory, C.: Über die starken Maxima und Minima bei einfachen Integralen, Habilitationsschrift, Universität Gottingen 1905.Mathematische Annalen, 62, 1906, 449-503, MR 1511387, 10.1007/BF01449816
Reference: [4] Caratheodory, C.: Sur les points singuliers du problème du Calcul des Variations dans le plan.Annali di Matematica pura e applicata, 21, 1913, 153-171,
Reference: [5] Dresden, A.: An Example of the Indicatrix in the Calculus of Variations.Am. Math. Mon., 14, 1907, 119-126, MR 1516849, 10.2307/2971687
Reference: [6] Dresden, A.: An Example of the Indicatrix in the Calculus of Variations (continued).Am. Math. Mon., 14, 1907, 143-150, MR 1516868, 10.2307/2969106
Reference: [7] Dresden, A.: The Second Derivatives of the Extremal-Integral.Trans. Amer. Math. Soc., 9, 1908, 467-486, MR 1500822, 10.1090/S0002-9947-1908-1500822-8
Reference: [8] Erdmann, G.: Über die unstetige Lösungen in der Variationsrechnung.J. Reine Angew. Math., 82, 1877, 21-30, MR 1579696
Reference: [9] Giaquinta, M., Hildebrandt, S.: Calculus of variations I, II.1996, Springer-Verlag, Berlin, Heidelberg, New York, MR 1385926
Reference: [10] Graves, L.M.: Discontinuous Solutions in the Calculus of Variations.Bull. Amer. Math. Soc., 36, 1930, 831-846, MR 1562066, 10.1090/S0002-9904-1930-05074-0
Reference: [11] Graves, L.M.: Discontinuous Solutions in Space Problems of the Calculus of Variations.Amer. J. Math., 52, 1930, 1-28, MR 1507915, 10.2307/2370644
Reference: [12] Hadamard, J.: Leçons sur le calcul des variations.Hermann et fils, Paris, 1910, 3-88,
Reference: [13] Hestenes, M. R.: Calculus of variations and optimal control theory.1966, Wiley, New York, London, Sydney, Zbl 0173.35703, MR 0203540
Reference: [14] Massa, E., Bruno, D., Luria, G., Pagani, E.: Geometric constrained variational calculus. I: Piecewise smooth extremals.Int. J. Geom. Methods Mod. Phys., 12, 2015, 1550061. Zbl 1319.49031, MR 3349930, 10.1142/S0219887815500619
Reference: [15] Massa, E., Bruno, D., Luria, G., Pagani, E.: Geometric constrained variational calculus. II: The second variation (Part I).Int. J. Geom. Methods Mod. Phys., 13, 2016, 1550132. Zbl 1345.49025, MR 3438668
Reference: [16] Massa, E., Luria, G., Pagani,, E.: Geometric constrained variational calculus. III: The second variation (Part II).Int. J. Geom. Methods Mod. Phys., 13, 2016, 1650038. Zbl 1345.49026, MR 3479786
Reference: [17] Milyutin, A. A., Osmolovskii, N. P.: Calculus of Variations and Optimal Control (Translations of Mathematical Monographs).1998, American Mathematical Society, MR 1641590
Reference: [18] Osmolovskii, N.P., Lempio, F.: Jacobi conditions and the Riccati equation for a broken extremal.J. Math. Sci, 100, 2000, 2572-2592, MR 1776562, 10.1007/BF02673843
Reference: [19] Osmolovskii, N.P., Lempio, F.: Transformation of Quadratic Forms to Perfect Squares for Broken Extremals.Set-Valued Var. Anal., 10, 2002, 209-232, Zbl 1050.49016, MR 1926381
Reference: [20] Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: The mathematical theory of optimal processes.1962, Interscience Publishers John Wiley & Sons Inc, New York-London, MR 0166037
Reference: [21] Reid, W.T.: Discontinuous Solutions in the Non-Parametric Problem of Mayer in the Calculus of Variations.Amer. J. Math., 57, 1935, 69-93, Zbl 0011.02704, MR 1507056, 10.2307/2372020
Reference: [22] Rider, P.R.: The figuratix in the Calculus of Variations.Trans. Amer. Math. Soc., 28, 1926, 640-653, MR 1501368, 10.1090/S0002-9947-1926-1501368-4
Reference: [23] Sagan, H.: Introduction to the calculus of variations.1969, McGraw--Hill Book Company, New York,
.

Files

Files Size Format View
ActaOstrav_24-2016-2_2.pdf 481.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo