Previous |  Up |  Next

Article

Title: Variational principles and symmetries on fibered multisymplectic manifolds (English)
Author: Gaset, Jordi
Author: Prieto-Martínez, Pedro D.
Author: Román-Roy, Narciso
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388
Volume: 24
Issue: 2
Year: 2016
Pages: 137-152
Summary lang: English
.
Category: math
.
Summary: The standard techniques of variational calculus are geometrically stated in the ambient of fiber bundles endowed with a (pre)multisymplectic structure. Then, for the corresponding variational equations, conserved quantities (or, what is equivalent, conservation laws), symmetries, Cartan (Noether) symmetries, gauge symmetries and different versions of Noether's theorem are studied in this ambient. In this way, this constitutes a general geometric framework for all these topics that includes, as special cases, first and higher order field theories and (non-autonomous) mechanics. (English)
Keyword: Variational principles
Keyword: Symmetries
Keyword: Conserved quantities
Keyword: Noether theorem
Keyword: Fiber bundles
Keyword: Multisymplectic manifolds.
MSC: 49S05
MSC: 53D42
MSC: 55R10
MSC: 70H50
MSC: 70S05
MSC: 70S10
idZBL: Zbl 06697287
idMR: MR3590211
.
Date available: 2017-02-28T16:45:09Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/146017
.
Reference: [1] Aldaya, V., Azcarraga, J. A. de: Variational Principles on $r-th$ order jets of fibre bundles in Field Theory.J. Math. Phys., 19, 9, 1978, 1869-1875, MR 0496116, 10.1063/1.523904
Reference: [2] Aldaya, V., Azcarraga, J.A. de: Higher order Hamiltonian formalism in Field Theory.J. Phys. A, 13, 8, 1980, 2545-2551, Zbl 0467.58013, MR 0582906
Reference: [3] Arnold, V. I.: Mathematical methods of classical mechanics.60, 1989, Springer-Verlag, New York, Zbl 0692.70003, MR 0997295
Reference: [4] Dedecker, P.: On the generalization of symplectic geometry to multiple integrals in the calculus of variations.Differential Geometrical Methods in Mathematical Physics, 570, 1977, 395-456, Springer, Berlin, Zbl 0352.49018, MR 0458478
Reference: [5] León, M. de, Marín-Solano, J., Marrero, J. C., Muñoz-Lecanda, M. C., Román-Roy, N.: Pre-multisymplectic constraint algorithm for field theories.Int. J. Geom. Meth. Mod. Phys., 2, 2005, 839-871, Zbl 1156.70317, MR 2177288, 10.1142/S0219887805000880
Reference: [6] León, M. de, Diego, D. Martín de: Symmetries and Constant of the Motion for Singular Lagrangian Systems.Int. J. Theor. Phys., 35, 5, 1996, 975-1011, MR 1386775, 10.1007/BF02302383
Reference: [7] León, M. de, Diego, D. Martín de, Santamaría-Merino, A.: Symmetries in classical field theory.Int. J. Geom. Meths. Mod. Phys., 1, 5, 2004, 651-710, MR 2095443, 10.1142/S0219887804000290
Reference: [8] Echeverría-Enríquez, A., León, M. De, Muñoz-Lecanda, M. C., Román-Roy, N.: Extended Hamiltonian systems in multisymplectic field theories.J. Math. Phys., 48, 11, 2007, 112901. Zbl 1152.81420, MR 2370237, 10.1063/1.2801875
Reference: [9] Echeverría-Enríquez, A., Muñoz-Lecanda, M.C., Román-Roy, N.: Geometry of Lagrangian first-order classical field theories.Forts. Phys., 44, 1996, 235-280, Zbl 0964.58015, MR 1400307, 10.1002/prop.2190440304
Reference: [10] Echeverría-Enríquez, A., Muñoz-Lecanda, M.C., Román-Roy, N.: Multivector fields and connections: Setting Lagrangian equations in field theories.J. Math. Phys., 39, 9, 1998, 4578-4603, Zbl 0927.37054, MR 1643297, 10.1063/1.532525
Reference: [11] Echeverría-Enríquez, A., Muñoz-Lecanda, M.C., Román-Roy, N.: Multivector Field Formulation of Hamiltonian Field Theories: Equations and Symmetries.J. Phys. A: Math. Gen., 32, 1999, 8461-8484, Zbl 0982.70019, MR 1733703, 10.1088/0305-4470/32/48/309
Reference: [12] Ferraris, M., Francaviglia, M.: Applications of the Poincaré-Cartan form in higher order field theories.Differential Geometry and Its Applications (Brno, 1986), Math. Appl.(East European Ser.), 27, 1987, 31-52, Zbl 0659.58010, MR 0923342
Reference: [13] García, P. L.: The Poincaré-Cartan invariant in the calculus of variations.Symp. Math., 14, 1973, 219-246, MR 0406246
Reference: [14] García, P. L., Muñoz, J.: On the geometrical structure of higher order variational calculus.Atti. Accad. Sci. Torino Cl. Sci. Fis. Math. Natur., 117, 1983, 127-147, Zbl 0569.58008, MR 0773483
Reference: [15] Giachetta, G., Mangiarotti, L., Sardanashvily, G.: New Lagrangian and Hamiltonian methods in field theory.1997, World Scientific Publishing Co., Inc., River Edge, NJ, Zbl 0913.58001, MR 2001723
Reference: [16] Goldschmidt, H., Sternberg, S.: The Hamilton-Cartan formalism in the calculus of variations.Ann. Inst. Fourier Grenoble, 23, 1, 1973, 203-267, Zbl 0243.49011, MR 0341531, 10.5802/aif.451
Reference: [17] Hélein, F., J, J. Kouneiher: Covariant Hamiltonian formalism for the calculus of variations with several variables: Lepage--Dedecker versus De Donder--Weyl.Adv. Theor. Math. Phys., 8, 2004, 565-601, Zbl 1115.70017, MR 2105190
Reference: [18] Kouranbaeva, S., Shkoller, S.: A variational approach to second-order multisymplectic field theory.J. Geom. Phys., 4, 2000, 333-366, Zbl 0987.70020, MR 1780759, 10.1016/S0393-0440(00)00012-7
Reference: [19] Krupka, D.: Introduction to Global Variational Geometry.2015, Atlantis Studies in Variational Geometry, Atlantis Press, Zbl 1310.49001, MR 3290001
Reference: [20] Krupka, D., Štěpánková, O.: On the Hamilton form in second order calculus of variations.Procs. Int. Meeting on Geometry and Physics, 1982, 85-101, MR 0760838
Reference: [21] Mangiarotti, L., Sardanashvily, G.: Gauge Mechanics.1998, World Scientific, Singapore, MR 1689375
Reference: [22] Prieto-Martínez, P. D., Román-Roy, N.: Higher-order mechanics: variational principles and other topics.J. Geom. Mech., 5, 4, 2013, 493-510, Zbl 1284.35014, MR 3180709, 10.3934/jgm.2013.5.493
Reference: [23] Prieto-Martínez, P.D., Román-Roy, N.: Variational principles for multisymplectic second-order classical field theories.Int. J. Geom. Meth. Mod. Phys, 12, 8, 2015, 1560019. MR 3400659
Reference: [24] Sarlet, W., Cantrijn, F.: Higher-order Noether symmetries and constants of the motion.J. Phys. A: Math. Gen., 14, 1981, 479-492, Zbl 0464.58010, MR 0601885, 10.1088/0305-4470/14/2/023
Reference: [25] Saunders, D.J.: The geometry of jet bundles.London Mathematical Society, Lecture notes series, 142, 1989, Cambridge University Press, Cambridge, New York, Zbl 0665.58002, MR 0989588
.

Files

Files Size Format View
ActaOstrav_24-2016-2_5.pdf 441.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo