Previous |  Up |  Next

Article

Title: Geometry of the free-sliding Bernoulli beam (English)
Author: Moreno, Giovanni
Author: Stypa, Monika Ewa
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388
Volume: 24
Issue: 2
Year: 2016
Pages: 153-171
Summary lang: English
.
Category: math
.
Summary: If a variational problem comes with no boundary conditions prescribed beforehand, and yet these arise as a consequence of the variation process itself, we speak of the free boundary values variational problem. Such is, for instance, the problem of finding the shortest curve whose endpoints can slide along two prescribed curves. There exists a rigorous geometric way to formulate this sort of problems on smooth manifolds with boundary, which we review here in a friendly self-contained way. As an application, we study the particular free boundary values variational problem of the free-sliding Bernoulli beam. This paper is dedicated to the memory of prof. Gennadi Sardanashvily. (English)
Keyword: Global Analysis
Keyword: Calculus of Variations
Keyword: Free Boundary Problems
Keyword: Jet Spaces
Keyword: Bernoulli Beam
MSC: 12X34
MSC: 58E30
MSC: 74K10
idZBL: Zbl 06697288
idMR: MR3590212
.
Date available: 2017-02-28T16:46:42Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/146018
.
Reference: [1] Duchamp, I. M. Anderson and T.: On the existence of global variational principles.Amer. J. Math., 102, 5, 1980, 781-868, ISSN 0002-9327. DOI 10.2307/2374195. MR 0590637, 10.2307/2374195
Reference: [2] Bocharov, A. V., Chetverikov, V. N., Duzhin, S. V., Khor'kova, N. G., Krasil'shchik, I. S., Samokhin, A. V., Torkhov, Yu. N., Verbovetsky, A. M., Vinogradov, A. M.: Symmetries and conservation laws for differential equations of mathematical physics.Translations of Mathematical Monographs, 182, 1999, American Mathematical Society, Providence, RI, ISBN 0-8218-0958-X. Edited and with a preface by Krasil'shchik and Vinogradov, translated from 1997 Russian original by Verbovetsky and Krasil'shchik. MR 1670044
Reference: [3] Dedecker, P.: Calcul des variations, formes différentielles et champs géodésiques.Géométrie différentielle. Colloques Internationaux du Centre National de la Recherche Scientifique, Strasbourg, 1953, 17-34, Centre National de la Recherche Scientifique, Paris, Zbl 0052.32003, MR 0062964
Reference: [4] Gel'fand, I. M., Dikiĭ, L. A.: The calculus of jets and nonlinear Hamiltonian systems.Funkcional. Anal. i Priložen., 12, 2, 1978, 8-23, ISSN 0374-1990. MR 0501129
Reference: [5] Giaquinta, M., Hildebrandt, S.: Calculus of variations. I.Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 310, 1996, Springer-Verlag, Berlin, ISBN 3-540-50625-X. The Lagrangian formalism. MR 1385926
Reference: [6] Janet, M.: Leçons sur les Systèmes d'Équations aux Dérivées Partielles.1929, Gauthier-Villars,
Reference: [7] Krupka, D.: Of the structure of the Euler mapping.Arch. Math., 10, 1, 1974, 55-61, ISSN 0044-8753. MR 0394755
Reference: [8] Krupka, D., Moreno, G., Urban, Z., Voln{á}, J.: On a bicomplex induced by the variational sequence.Int. J. Geom. Methods Mod. Phys., 15, 5, 2015, 1550057. ISSN 0219-8878. DOI 10.1142/S0219887815500577. Zbl 1322.58013, MR 3349926, 10.1142/S0219887815500577
Reference: [9] Lánczos, C.: The variational principles of mechanics.4, 1970, University of Toronto Press, Toronto, Ont., Fourth Ed.. Zbl 0257.70001, MR 0431821
Reference: [10] Love, A. E. H.: A treatise on the Mathematical Theory of Elasticity.1944, Dover Publications, New York, Fourth Ed.. Zbl 0063.03651, MR 0010851
Reference: [11] Moreno, G.: Condizioni di trasversalitá nel calcolo secondario.2007, PhD thesis, University of Naples ``Federico II'' (2007).
Reference: [12] Moreno, G.: A C-spectral sequence associated with free boundary variational problems.Geometry, integrability and quantization, 2010, 146-156, Avangard Prima, Sofia, MR 2757930
Reference: [13] Moreno, G.: The geometry of the space of cauchy data of nonlinear pdes.Central European Journal of Mathematics, 11, 11, 2013, 1960-1981, DOI 10.2478/s11533-013-0292-y. Zbl 1292.35011, MR 3092791, 10.2478/s11533-013-0292-y
Reference: [14] Moreno, G., Stypa, M. E.: Natural boundary conditions in geometric calculus of variations.Math. Slovaca, 65, 6, 2015, 1531-1556, ISSN 0139-9918. DOI 10.1515/ms-2015-0105. MR 3458999, 10.1515/ms-2015-0105
Reference: [15] Sardanashvily, G. A.: Gauge theory in jet manifolds.1993, Hadronic Press Inc., Palm Harbor, FL, ISBN 0-911767-60-6.. Zbl 0811.58004, MR 1262598
Reference: [16] Saunders, D. J.: The geometry of jet bundles.142, 1989, Cambridge University Press, Cambridge, ISBN 0-521-36948-7. DOI 10.1017/CBO9780511526411. Zbl 0665.58002, MR 0989588, 10.1017/CBO9780511526411
Reference: [17] Takens, F.: Symmetries, conservation laws and variational principles.Lect. Notes Math., 597, 1977, 581-604, Springer-Verlag, Zbl 0368.49019, MR 0650304, 10.1007/BFb0085377
Reference: [18] Tsujishita, T.: On variation bicomplexes associated to differential equations.Osaka J. Math., 19, 2, 1982, 311-363, ISSN 0030-6126. Zbl 0524.58041, MR 0667492
Reference: [19] Tulczyjew, W. M.: Sur la différentielle de Lagrange.C. R. Acad. Sci. Paris Sér. A, 280, 1975, 1295-1298, Zbl 0314.58018, MR 0377987
Reference: [20] Brunt, B. van: The calculus of variations.2004, Springer-Verlag, New York, ISBN 0-387-40247-0. MR 2004181
Reference: [21] Vinogradov, A. M.: The C-spectral sequence, Lagrangian formalism, and conservation laws. I. The linear theory.J. Math. Anal. Appl., 100, 1, 1984, 1-40, ISSN 0022-247X. MR 0739951, 10.1016/0022-247X(84)90071-4
Reference: [22] Vinogradov, A. M.: The C-spectral sequence, Lagrangian formalism, and conservation laws. II. The nonlinear theory.J. Math. Anal. Appl., 100, 1, 1984, 41-129, ISSN 0022-247X. MR 0739952, 10.1016/0022-247X(84)90072-6
Reference: [23] Vinogradov, A. M., Moreno, G.: Domains in infinite jet spaces: the C-spectral sequence.Dokl. Akad. Nauk, 413, 2, 2007, 154-157, ISSN 0869-5652. DOI 10.1134/S1064562407020081. MR 2456137, 10.1134/S1064562407020081
.

Files

Files Size Format View
ActaOstrav_24-2016-2_6.pdf 2.775Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo