Previous |  Up |  Next

Article

Title: A graph associated to proper non-small ideals of a commutative ring (English)
Author: Atani, S. Ebrahimi
Author: Hesari, S. Dolati Pish
Author: Khoramdel, M.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 58
Issue: 1
Year: 2017
Pages: 1-12
Summary lang: English
.
Category: math
.
Summary: In this paper, a new kind of graph on a commutative ring is introduced and investigated. Small intersection graph of a ring $R$, denoted by $G(R)$, is a graph with all non-small proper ideals of $R$ as vertices and two distinct vertices $I$ and $J$ are adjacent if and only if $I\cap J$ is not small in $R$. In this article, some interrelation between the graph theoretic properties of this graph and some algebraic properties of rings are studied. We investigated the basic properties of the small intersection graph as diameter, girth, clique number, cut vertex, planar property and independence number. Further, it is shown that the independence number of a small graph of a ring $R$ is equal to the number of its maximal ideals and the domination number of small graph is at most 2. (English)
Keyword: small ideal
Keyword: small intersection graph
Keyword: clique number
Keyword: independence number
Keyword: domination number
Keyword: planar property
MSC: 05C25
MSC: 05C40
MSC: 13A15
idZBL: Zbl 06736739
idMR: MR3631676
DOI: 10.14712/1213-7243.2015.189
.
Date available: 2017-03-12T16:31:22Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/146021
.
Reference: [1] Akbari S., Tavallaee H.A., Ghezelahmad S. Khalashi: Intersection graph of submodules of a module.J. Algebra Appl. 11 (2012), 1250019. MR 2900889, 10.1142/S0219498811005452
Reference: [2] Anderson D.F., Livingston P.S.: The zero-divisor graph of a commutative rings.J. Algebra 217 (1999), 434–447. MR 1700509, 10.1006/jabr.1998.7840
Reference: [3] Beck I.: Coloring of commutative rings.J. Algebra 116 (1988), 208–226. Zbl 0654.13001, MR 0944156, 10.1016/0021-8693(88)90202-5
Reference: [4] Bondy J.A., Murty U.S.R.: Graph Theory.Graduate Texts in Mathematics, 244, Springer, New York, 2008. Zbl 1134.05001, MR 2368647
Reference: [5] Bosak J.: The graphs of semigroups.in Theory of Graphs and its Applications, Academic Press, New York, 1964, pp. 119–125. Zbl 0161.20901, MR 0173718
Reference: [6] Chakrabarty I., Ghosh S., Mukherjee T.K., Sen M.K.: Intersection graphs of ideals of rings.Discrete Math. 309 (2009), 5381–5392. Zbl 1193.05087, MR 2548554, 10.1016/j.disc.2008.11.034
Reference: [7] Chelvam T., Asir T.: The intersection graph of gamma sets in the total graph I.J. Algebra Appl. 12 (2013), no. 4, 1250198, 18 pp. MR 3037273, 10.1142/S0219498812501988
Reference: [8] Csákány B., Pollák G.: The graph of subgroups of a finite group.Czechoslovak Math. J. 19 (1969), 241–247. MR 0249328
Reference: [9] Haynes T.W., Hedetniemi S.T., Slater P.J. (eds.): Fundamentals of Domination in Graphs.Marcel Dekker, Inc., New York, NY, 1998. Zbl 0890.05002, MR 1605684
Reference: [10] Jafari S.H., Jafari Rad N.: Domination in the intersection graphs of rings and modules.Ital. J. Pure Appl. Math. 28 (2011), 19–22. Zbl 1239.13014, MR 2922478
Reference: [11] Lam T.Y.: A First Course in Non-commutative Rings.Graduate Texts in Mathematics, 131, Springer, Berlin-Heidelberg-New York, 1991. MR 1125071, 10.1007/978-1-4684-0406-7
Reference: [12] Pucanović Z.S., Radovanović M., Aleksandra E.L.: On the genus of the intersection graph of ideals of a commutative ring.J. Algebra Appl. 13 (2014), no. 5, 1350155, 20 pp. Zbl 1290.13004, MR 3190084, 10.1142/S0219498813501557
Reference: [13] Pucanović Z.S., Petrović Z.Z.: Toroidality of intersection graphs of ideals of commutative rings.Graphs Combin. 30 (2014), no. 3, 707–716. Zbl 1291.13014, MR 3195810, 10.1007/s00373-013-1292-1
Reference: [14] Yaraneri E.: Intersection graph of a module.J. Algebra Appl. 12 (2013), no. 5, 1250218, 30 pp. MR 3055575, 10.1142/S0219498812502180
Reference: [15] Wisbauer R.: Foundations of Module and Ring Theory.Gordon and Breach Science Publishers, Philadelphia, 1991. Zbl 0746.16001, MR 1144522
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_58-2017-1_1.pdf 288.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo