Previous |  Up |  Next

Article

Title: About G-rings (English)
Author: Mahdou, Najib
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 58
Issue: 1
Year: 2017
Pages: 13-18
Summary lang: English
.
Category: math
.
Summary: In this paper, we are concerned with G-rings. We generalize the Kaplansky's theorem to rings with zero-divisors. Also, we assert that if $R \subseteq T$ is a ring extension such that $mT\subseteq R$ for some regular element $m$ of $T$, then $T$ is a G-ring if and only if so is $R$. Also, we examine the transfer of the G-ring property to trivial ring extensions. Finally, we conclude the paper with illustrative examples discussing the utility and limits of our results. (English)
Keyword: G-ring
Keyword: pullback
Keyword: trivial extension
MSC: 13D02
MSC: 13D05
idZBL: Zbl 06736740
idMR: MR3631677
DOI: 10.14712/1213-7243.2015.196
.
Date available: 2017-03-12T16:32:30Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/146024
.
Reference: [1] Adams J.C.: Rings with a finitely generated total quotient ring.Canad. Math. Bull. 17 (1974), 1–4. Zbl 0295.13004, MR 0354639, 10.4153/CMB-1974-001-x
Reference: [2] Bakkari C., Kabbaj S., Mahdou N.: Trivial extensions defined by Prüfer conditions.J. Pure Appl. Algebra 214 (2010), no. 1, 53–60. Zbl 1175.13008, MR 2561766, 10.1016/j.jpaa.2009.04.011
Reference: [3] Bourbaki N.: Commutative Algebra.Addison-Wesley, Reading, 1972. Zbl 1107.13002
Reference: [4] Brewer J.W., Rutter E.A.: $D+M$ constructions with general overrings.Michigan Math. J. 23 (1976), 33–42. Zbl 0318.13007, MR 0401744, 10.1307/mmj/1029001619
Reference: [5] Cahen P.J.: Couple d'anneaux partageant un idéal.Arch. Math. 51 (1988), 505–514. MR 0973725, 10.1007/BF01261971
Reference: [6] Dobbs D.E.: G-Domain pairs.Internat. J. Commutative Rings 1 (2002), no. 2, 71–75. Zbl 1072.13012, MR 2037658
Reference: [7] Dobbs D.E., Ishikawa T.: On seminormal underrings.Tokyo J. Math. 10 (1987), 157–159. Zbl 0629.13002, MR 0899480, 10.3836/tjm/1270141800
Reference: [8] Dobbs D.E., Papick I.: When is $D+M$ coherent?.Proc. Amer. Math. Soc. 56 (1976), 51–54. Zbl 0329.13014, MR 0409448
Reference: [9] Fontana M.: Topologically defined classes of commutative rings.Ann. Mat. Pura Appl. 123 (1980), 331–355. Zbl 0443.13001, MR 0581935, 10.1007/BF01796550
Reference: [10] Gilmer R.: The pseudo-radical of a commutative ring.Pacific J. Math. 19 (1966), 275–284. Zbl 0147.01501, MR 0204452, 10.2140/pjm.1966.19.275
Reference: [11] Huckaba J.A.: Commutative Rings with Zero Divisors.Marcel Dekker, New York-Basel, 1988. Zbl 0637.13001, MR 0938741
Reference: [12] Kaplansky I.: Commutative Rings.revised edition, University of Chicago Press, Chicago, 1974. Zbl 0296.13001, MR 0345945
Reference: [13] Kabbaj S., Mahdou N.: Trivial extensions of local rings and a conjecture of Costa.Lecture Notes in Pure and Appl. Math., 231, Dekker, New York, 2003, pp. 301–311. Zbl 1086.13003, MR 2029833
Reference: [14] Kabbaj S., Mahdou N.: Trivial extensions defined by coherent-like conditions.Comm. Algebra 32 (2004), no. 10, 3937-3953. Zbl 1068.13002, MR 2097439, 10.1081/AGB-200027791
Reference: [15] Mahdou N., Mimouni A, Moutui M.A.: On almost valuation and almost Bézout rings.Comm. Algebra 43 (2015), no. 1, 297–308. Zbl 1315.13035, MR 3240420, 10.1080/00927872.2014.897586
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_58-2017-1_2.pdf 229.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo